
20S933

FINAL REPORT

Providing Access to Graphical User Interfaces: The Mercator Project

July 25, 1996

Elizabeth Mynatt
GVU Center / College of Computing

Georgia Institute of Technology

0 ¢:/-r --¸

TECHNICAL CONTACT: Craig E. Moore

SUMMARY: The purpose of this work was to enhance the existing Mercator rese/u'ch prototype to
a commercial software system. The goal was to develop a commercial screen reader software
system running on the Sun platform called UltraSonix. UltraSonix provides transparent access to
X applications based on the Motif toolkit. Motif is the most common toolkit for building X

applications; over 90 percent of X applications are built using Motif. UltraSonix allows - _,
transparent access of "off-the-shelf" Motif applications by blind users; no modifications to the
applications are necessary to allow access.

Specific tasks included:

• Modifying Mercator to support Motif applications, including the Unix standard CDE
environment on Sun SPARCstations.

We have created a set of "rules" for translating Motif applications, as well as a set of
"templates" that govern how the system responds to the individual Motif widgets. The system
has been tested on the CDE environment running on Sun Solaris 2.4 and later.

This is described in the UltraSonix User Manual, Section 6.2.1.

• Porting Mercator to the DEC Alpha platform

This task comprised three activities: resolving 64-bit portability issues, AudioFile support, and
resolving Solaris versus OSF/1 issues.

This activity was contingent upon receiving a DEC Alpha workstation from Digital Equipment
Corporation. DEC was unable to furnish us with a development workstation, so we were
unable to resolve 64-bit or OSF/1 porting issues. We did, however, port the audio layer of the
system to support DEC's AudioFile audio server.

!

AudioFile support is described in the UltraSonix Design Document, Section 9.4.5.

Expanding the I/O facilities to support voice input, Braille output as well as different speech
synthesis systems.

We have extended the I/O capabilities of the system to support multiple forms of speech, non-
speech, and Braille I/O. The system currently supports the Dectalk DTC01, Dectalk Express,
and TruVoice speech synthesizers, NetAudio and AudioFile audio servers, and the Alva line of

Braille keyboards.

I/O subsystem internals are described in the UltraSonix Design Document, Section 9.0;
configuration of the I/O system is described in Section 9.3.4.

I

Developing RAP (Remote Access Protocol) to support the use of the X 11R6 standard
"disability access hooks" by external agents such as screen readers. This effort was performed
in conjunction with the X Consortium.

The Remote Access Protocol work is ongoing within the X Consortium. Pieces of the
proposal have been accepted as consortium standards however. The "ICE Rendezvous
Mechanism," which specifies how UltraSonix will initially connect to client applications, has
been accepted as a consortium standard and shipped in X11R6.1.

The ICE Rendezvous Mechanism work was undertaken in conjunction with Digital Equipment
Corporation, and is described in the UltraSonix Design Document, Section 4.3.

The current proposed RAP spec is described in the UltraSonix Design Document, Section 4.2
and 4.5.

As we were unable to complete the port to the DEC Alpha workstation, we undertook several other
tasks to improve the usability and configurability of the system.

Additional tasks completed:

• Console Support.

We extended the system to support "console" applications that act as "controlling terminals" for
the UltraSonix system. Two consoles ship with UltraSonix, a command-line version, and a
fully graphical version. These consoles allow easy end-user customization and control of
UltraSonix.

The consoles are described in the UltraSonix Design Document, Section 10.2.

• Extensible Text Filters.

UltraSonix now has the capability to support user-supplied "text filters" that control the output
of text in on-screen text areas. These can be easily defined by end-users to customize the
system.

Text filters are described in the UltraSonix Design Document, Section 6.3.3

• Solaris Package Format Installation.

The UltraSonix software for Solaris ships in the standard "package" format. This format
allows easy installation and upgrade of the software, either from the command line or via the
Software Manager GUI tool that ships with Solaris.

Installation of package files is described in the UltraSonix User Manual, Section 2.2.

BACKGROUND: This project was undertaken to provide transparent access to X Windows
application for people who are blind or severely visually impaired. This goal requires that the
interactive visual interface be transformed into an interactive nonvisual interface. Software that

performs this type of task is typically called a screen reader. Much of the work in developing
•:screen readers has been fueled by federal legislation requiring access to electronic equipment.

With theintroductionof graphicaluserinterfaces,thedifficulty of providingaccessto visual
interfacesincreaseddramatically.This increasewasdueto theuseof bit-mappeddisplays.The
screenreadercanno longerutilizetheframebufferto determinethecontentsof thescreen,butmust
somehowtrapthedrawingrequestsoriginatingfrom thegraphicalapplications.Also, theuseof
graphicalobjectsor iconsaswell astheuseof themouse,makethejob of transformingagraphical
interfaceintoanothermodalityextremelydifficult. At this timeaccesssolutionsfor theMacintosh
andMicrosoftWindowsareavailablecommercially.Only X Windowsis still inaccessible,
although,thisprojecthasdevelopeda screenreaderfor X Windowswhichonly needsfurther
commercializationwork to turn it intoacommercialproduct.

APPROACH:Threemajorprototypesystemsweredevelopedto investigatesoftwarearchitectures
for supportingtransforminggraphicalinterfacesintononvisualinterfaces.Thefinal prototype
utilizesthreeextensionsto X Windowsto supportscreenreaderaccess.Two of these extensions

were developed by this project. The first extension, called the Xt-based protocol, provides
asynchronous communication between the X application and the screen reader. This protocol can
be used to inform the screen reader when objects such as windows are created, when they are
modified, and when they are deleted (or unmapped) such as a dialog box disappearing from the

screen. The second extension, called the Xlib hook, is used to trap all information that bypasses
the Xt hooks. This information is typically low-level information such as simple drawing and text
rendering requests. These two hooks used together provide sufficient information to model a
graphical application. The last extension, called XTest, not developed by this project, is used to
simulate mouse input by a blind person using either keyboard or voice input. The information

' about the X application is stored in an off-screen model. The data is stored according to the widget
hierarchy which was used to create the X application. This tree structure represents parent-child
relationships between the interface objects. Resources (or attributes) of the interface objects are
also stored. The screen reader (called Mercator) then provides translation rules for the different

types of interface objects. These rules specify how different interface objects, such as a push
button or menu, are represented and how they respond to user input.

ACCOMPLISHMENTS: The accomplishments of the Mercator project have been two-fold. First,
in order to provide transparent access to X applications, a software framework (or environment)
was developed which can monitor (watch for changes in the state of application), model (build a
useful off-screen model of the application interface) and translate (provide "rules" for translating
the graphical interface into a nonvisual interface) X applications as well as providing new ways to
send user input to the application. Second, this project has designed and informally evaluated a
"hear-and-feel" methodology for transforming graphical interfaces into nonvisual interfaces. This

task is important because little is known about effective ways to effectively represent graphical
interfaces for blind computer users. In summary, this project has demonstrated the feasibility of
providing access to X Windows for blind computer users. At this time, the researchers at Tech are

the only ones world-wide to build such a system. Tech has acted as champion and designer of the
disability access hooks for X Windows. These hooks are now part of the general X Windows
distribution. They support the use of screen readers as well as other applications which need to
monitor and configure the execution of a graphical X applications. Through publishing,
demonstration and presentations, Tech has successfully introduced new interaction techniques for
screen readers. These techniques, such as the use of auditory icons and hierarchical navigation,
provide an intuitive and efficient interface to graphical applications for blind computer users. This
project establishes Georgia Tech as the primary researchers in this area. This recognition allowed
them to begin working with the newly formed DACX committee and the X Consortium on

modification to X Windows to support access for people with disabilities. The DACX (Disability
Action Committee on X) is a national, vendor-neutral committee which is helping design and
implement standard access solutions for people who want to use X Windows.

This commercialization effort is jointly supported by Georgia's Advanced Development
Technology Center's Faculty Commercialization Grant.

PUBLICATIONSAND PATENT APPLICATIONS:

Edwards, W.K., Liebeskind, S. H., Mynatt, E.D and Walker, W.D. A Remote Access Protocol

for the X Window System. In the Proceedings of the 9th Annual X Technical Conference, Boston,
MA, 1995.

Edwards, W.K. and Mynatt, E.D. An Architecture for Transforming Graphical Interfaces. In the
Proceedings of UIST'94: User Interface Software and Technology Symposium, Marina Del Ray,
CA., Nov. 2-4, 1994, 39-47.

Edwards, W.K., Mynatt, E.D. and Stockton, K., "Providing Access to Graphical User Interfaces
- Not Graphical Screens," Proceedings of ASSETS "94, November 1994.

Edwards, W. K. and Rodriguez, T. Runtime Translation of X Interfaces to Support Visually-
Impaired Users. In Proceedings of the 7th Annual X Technical Conference, Boston, MA, 1993.

Johnson, E., Mynatt, E.D., Novak, M., and Walker, W., "Extending the User Interface for X
Windows to Include Persons with Physical and Sensory Disabilities: The DACX Project," in the
Proceedings of the Closing the Gap Conference, Minneapolis, MN, October 1993.

Mynatt, E.D., "Transforming Graphical Interfaces into Auditory Interfaces for Blind Users," to
appear in ACM Transactions on Computer-Human Interaction, ACM, 1997.

Mynatt, E.D. and Edwards, W.K., "Metaphors for Nonvisual Computing," Extraordinary
Human-Computer Interaction, (editor) Dr. Alistair Edwards, University of York, Cambridge
University Press, 1996.

Mynatt, E. Transforming Graphical Interfaces into Auditory Interfaces. Doctoral Dissertation,
Georgia Institute of Technology, Atlanta. 1995.

Mynatt, E. Designing Auditory Icons, In Proceedings of the Second International Conference of
Auditory Display, ICAD "94, Sante Fe, New Mexico, 1995, pp. 109-120.

Mynatt, E.D., "Auditory Presentation of Graphical User Interfaces," Auditory Display:
Sonification, Audification and Auditory Interfaces, Ed. G. Kramer, SFI Studies in the Sciences of
Complexity, Vol 18, Addison Wesley, 1994.

Mynatt, E.D. and Weber, G., "Nonvisual Presentation of Graphical User Interfaces: Contrasting
Two Approaches," in the Proceedings of the 1994 ACM Conference on Human Factors in
Computing Systems (CHI'94).

Edwards, A., Edward, A.D.N. and Mynatt E.D., "Enabling Technology for Users with Special
Needs", in the Proceedings of INTERCHI'93, 1993 Conference on Human Factors in Computing
Systems and in the Proceedings of the 1994 ACM Conference on Human Factors in Computing
Systems (CHI'94). and in the Proceedings of the 1995 ACM Conference on Human Factors in
Computing Systems (CHr95).

ATTACHMENTS:

Transforming Graphical Interfaces into Auditory Interfaces for Blind Users (to appear in ACM
Transactions on Computer-Human Interaction, ACM, 1997).

UltraSonix Design Document.

UltraSonix User Manual.

Transforming Graphical Interfaces into

Auditory Interfaces for Blind Users

Elizabeth D. Mynatfl
Xerox Palo Alto Research Center

mynatt@parc.xerox.com

ABSTRACT

While graphical interfaces have provided a host of advantages to the majority of computer users, they have

created a significant barrier to blind computer users. To meet the needs of these users, a methodology for
transforming graphical interfaces into nonvisual interfaces has been developed. In this design, the salient

components of graphical interfaces are transformed into auditory interfaces. Based on a hierarchical model

of the graphical interface, the auditory interface utilizes auditory icons to convey interface objects. Users

navigate the interface by traversing its hierarchical structure. This design results in a usable interface that

meets the needs of blind users while providing many of the benefits of graphical interfaces.

KEYWORDS auditory interfaces, auditory icons, blind users, assistive technology, UI models

INTRODUCTION

The problem addressed by this research can be simply stated, "What kind of interface would you design for
a blind person using a graphical user interface?" The requirements of blind users demand a general

mechanism for transforming graphical interfaces into nonvisual interfaces. Additionally, blind users would

like to enjoy the benefits of graphical user interfaces. The requirements of blind users coupled with the
benefits of graphical interfaces form a set of goals for the interface transformations. We will see that

commercial software for blind users fails to meet many of these goals. Specifically, the reliance on a spatial
model of the graphical interface impacts the usability of the resulting nonvisual interface.

The first step in transforming graphical interfaces into nonvisual interfaces is determining the contents of the

transformation. What is being convened from the graphical modality into the nonvisual modality? Graphical

interfaces are composed of groups of interface objects that are presented spatially on a two dimensional

display. These objects are characterized by a number of attributes that help convey their intended

functionality. The objects making up the graphical interface, their attributes and the relationships between

the objects comprise the contents of the interface transformation.

Next, it is necessary to model the contents of the transformation so that the model both captures the critical

characteristics of the graphical interfaces and provides the basis for an intuitive nonvisual interface.

Different models are possible. After comparing spatial, hierarchical and conversational models, we argue for

1. This work was conducted when the author was at the Georgia Institute of Technology.

utilizing a hierarchical model because it best captures the underlying structure of the graphical interface

without requiring application, domain-specific knowledge.

Given a hierarchical model of the graphical interface, the next step is designing the nonvisual interface. In
this design, we have focused on conveying the contents of the user interface, supporting 'navigation, and

providing controls for manipulating the interface. By using auditory cues akin to sound effects heard in real

world environments, we attempt to provide the benefits of iconic representations. These auditory icons[14]

convey the type of interface objects as well as attributes of the objects such as their size, selection state, and

spatial location. For example, a muffled, light switch sound conveys a greyed-out toggle button.

Users move from object to object based on the hierarchical model of the interface. Interruptability,

navigation shortcuts, and previews help alleviate the potential tedium of traversing a large structure.

Auditory feedback also helps users perceive changes in the interface based on their input or application

events. For example, rising and falling whistling sounds accompany the appearance and disappearance of

pop-up windows.

Assessments of this design are based on over four years of feedback from blind computer users as well as

controlled experiments with sighted users. We conclude this paper by evaluating this design against the goals
that we outlined for interface transformations. Although lacking in its ability to present information

spatially, this design results in a usable interface that provides many of the critical characteristics of

graphical interfaces.

BACKGROUND

The GUI Problem

The 1990 paper "The Graphical User Interface: Crisis, Danger and Opportunity" [5] summarized an

overwhelming concern expressed by the blind community: a new type of visual interface threatened to erase

the progress made by the innovators of screen reader software. Such software (as the name implies) could

read the contents of a computer screen, allowing blind computer users equal access to the tools used by their

sighted colleagues. Whereas character-based screens were easily accessible, new graphical interfaces
presented a host of technological challenges. The contents of the screen were mere pixel values, the on or off

"dots" which form the basis of any bit-mapped display. The goal for screen reader providers was to develop

new methods for bringing the meaning of these picture-based interfaces to users who could not see them.

The crisis was imminent. Graphical user interfaces were quickly adopted by the sighted community as a
more intuitive interface. Ironically, these interfaces were deemed more accessible by the sighted population

because they seemed approachable for novice computer users. The danger was tangible in the forms of lost

jobs, barriers to education, and the simple frustration of being left behind by the computer industry.

Much has changed since that article was published. Commercial screen reader interfaces now exist for two

of the three main graphical environments. But many blind users still do not view graphical interfaces as a

new opportunity. Screen readers designers, faced with the task of translating a complex, visual interface into

auditory or tactile output, have attempted to create one-to-one translations of the spatially arranged graphical
interfaces. Blind users have responded with difficulties in using these visually-oriented interfaces.

The Mercator Project at Georgia Tech addressed two untouched areas of work in the screen reader

community. First, no one had designed a screen reader for X Window applications, such as Motif

applications used in research, business and educational settings. Second, there was little work in alternate

representations of graphical interfaces that were not based on speech output and spatial organizations.

The implementation of Mercator is described in [11][12][13]. Briefly, the system provides the infrastructure

to monitor and model unmodified X applications while they are running. A collection of "hooks ''1 in the

Xlib and Xt lntrinsics libraries of the X Window System trap interesting events such as the creation of a push

button or the appearance of a window. The information gleaned from these hooks is transmitted to Mercator

whichcreatesa model of the graphical interface based on the application's widget hierarchy. Mercator also

provides facilities for creating interfaces to replace or augment the graphical interface. Interface behavior

can be specified in an interpreted language supporting prototyping and end-user customization.

An underlying assumption in the design of Mercator interfaces is the dominant use of auditory output.

Researchers have experienced limited success with tactile devices with the exception of braille output.
Additionally, a significant portion of people who are blind also suffer from diabetes which reduces their

sensitivity to tactile stimuli [17]. Nevertheless Mercator includes a tactile component as well. For example,

since speech synthesizers are notoriously bad at reading source code, Mercator provides a Braille terminal as

an alternate means for presenting textual information

Requirements for GUI Access by Blind Users

The requirements for the auditory interface are driven by the need for blind users to work with their sighted

colleagues employing the same graphical applications. Without knowledge of the application domain, the

screen reader system must transform the contents of the graphical interface into a usable auditory interface.

By monitoring the execution of a graphical application, the screen reader creates a model of the application

interface and derives a complimentary auditory interface. The user's interaction with the auditory interface is

forwarded to the graphical interface and the process continues as shown in the following figure.

Graphical i ,I Mercator [
Application lnfboOrmatiOnutGU, _ I Screen Reader I

FIGURE 1: Simplified View of GUI to AUI Transformation

The foremost critical requirement is transparent transformations of graphical interfaces. Modifying

individual applications does not address problems of providing access to a set of graphical applications. A

general mechanism for transforming any X Window application is needed. The ideal scenario is that blind
users running the screen reader on their systems should be able to use any X application without needing to

specially tailor the application interfaces.

To address this need, Mercator automatically transforms text-based, X Windows applications while they are

running, providing an auditory interface. This requirement for transparent transformations impacts the

design in two critical ways. First, there is no domain knowledge to inform the creation of the auditory

interface. Mercator is unaware of the functionality of the application, such as whether it is a word processor

or electronic mail tool, but is only aware of how the graphical interface is constructed. Second, this

transformation is done in "real-time". There is no off-line processing or analysis of the graphical interface.

An implicit requirement for screen reader systems is that they facilitate collaboration between sighted and

blind colleagues. Blind users do not work in isolation from their sighted counterparts. Therefore it is

imperative that blind and sighted users be able to communicate about their use of application interfaces.

1. The "hooks" are now part of the standard X Windows System since XI 1R6. The protocol used to transmit
information trapped by the hooks to an external program is under consideration by the X Consortium.

In addition to reinforcing the need for transparent access, this requirement constrains the design of the

auditory interface. While an auditory interface to an application may be quite intuitive and usable, if it does

not express interface concepts similar to the graphical interface, it does not solve the collaboration need by

the blind computer user. Ideally a blind user should be able to ask a sighted user how to do something with

an application interface and be able to utilize directions expressed in terms of the graphical interface. This

ideal scenario is difficult to achieve, but the design goals of designing for collaboration versus designing for

intuitive auditory interaction conflict in interesting ways.

Within the range of graphical interfaces, this work focuses on the transformation of text-oriented graphical

interfaces such as electronic mail programs, word processors and spreadsheets. By choosing this area, we

are focusing on interfaces in which text is the primary object of interest and where text is manipulated

through the use of graphical controls. In contrast, applications such as drawing programs where graphics are

the primary objects of interest are not addressed in this work. This restriction is due to the additional

difficulty of representing pure graphical information in the auditory modality. Nevertheless the chosen

application set is sufficiently interesting since it represents applications that are commonly used.

Expressed as a general requirement, an additional need by blind computer users is to experience the benefits
of graphical interfaces enjoyed by their sighted counterparts, such as iconic representation and direct

manipulation. Below, we present goals for screen reader interface design based on the benefits of GUIs:

• Access to functionality

At a minimum, the user must be able to use the functions represented by the graphical interface. For

example, in a word processor where pull-down menus support operations for loading and saving files,
users would need an interface to this functionality. Some software vendors maintain that their

graphical applications are accessible to blind users because they provide a separate command-line

interface that can be read by older screen readers. Simply providing access to the same functionality

likely breaks the goal of supporting collaboration between blind and sighted users since they use a
distinctly different interface.

• Iconic representations of interface objects

Graphical icons, from trashcans to push buttons, help the user assess the capabilities of an interface

by leveraging knowledge of the physical world. Visual attributes of interface objects such as size and

highlighting also convey information to the user.

• Olrect manipulation

Closely coupled with the benefit of iconic representation, is the benefit of direct manipulation. This
benefit is achieves when the user is able to directly interact with objects of interest to the task at hand,

and output in the interface is expressed via these objects[18].

• Spatial arrangement

Graphical interfaces allow the user to organize information in a 2 1/2D space. Contrast organizing a

desktop by maintaining lists of objects and categories of lists. Another benefit of spatial arrangement

is that it can leverage knowledge of the physical world. Sliders that support viewing portions of a

document capitalize on moving sheets of paper sideways and front-to-back in a stack.

• Constant presentation

A benefit of visual interfaces is that they exist in physical space that can be reviewed over time. This

advantage of the vi_,aal sensory system is capitalized in graphical interfaces. These displays serve as a

surrogate short-term memory for recalling the contents of the user interfaces.

We will see that these benefits are ordered from easiest to hardest for a screen reader system to provide. In

the following section, we briefly evaluate screen reader systems that allow blind users to interact with

representations of graphical interfaces.

Evaluation of Screen Reader Interfaces

There are two general classes of commercial screen readers that provide auditory interfaces for graphical

interfaces. The first class is dominated by a product called OutSpoken [1]. The primary characteristic of this

class is that the structure of the auditory interface is based primarily on the spatial layout of the graphical

interface. Users navigate the screen using the mouse or keyboard shortcuts. The interface uses synthesized

speech almost exclusively. At the basic level, the user moves the mouse cursor across the screen, and when

the cursor intersects a graphical object the speech synthesizer reads information about that object. An

auditory cue is used to convey moving across a window boundary.

Since OutSpoken relies heavily on optical character recognition (OCR) algorithms that are extended to

recognize graphical icons, this interface does not group icons as one might expect. Two examples of

OutSpoken's interface reveal its usability limitations.

In a grouping of controls, such as these in the following figure, the users must access the controls in terms of

their visual layout. For example to move from "Row" to "Selection", the user must move down twice. There

is little information conveyed by this spatial layout, but the arrangement was chosen because it fit well

within the dialog box. The user could as easily move to the right twice. This interaction style requires blind
users to memorize visual layouts that conveys little meaning about the interface.

O ROW

0 £olumn

(_ Selection

Shlft Cell$_

_) Horizontally

Vertically

Table Layout

[Insert 1

[Delete]

{ Co. o,]

FIGURE 2: OutSpoken Example of Row-Column Navigation

The conceptual model that underlies the OutSpoken interface is the arrangement of information in a row-

column format. This model was chosen because it is similar to previous text-oriented screen reader

interfaces. Because the OutSpoken interface imposes little hierarchy (windows are the only grouping
mechanism), moving through the objects in the above dialog would result in this order of spoken output:

Row, Insert, Column, Delete, Selection and so on. Users are confused by this interaction since the semantic

groupings that are obvious in the visual interface are not conveyed in the auditory interface

ScreenReader II by IBM, WindowBridge by SynthAVoice, and ProTaik by Hinter Joyce are products that

provide access to the Microsoft Windows environment. As representatives of the second class of screen

readers, these interfaces require the use of existing keyboard shortcuts provided by the Windows

environment. Like OutSpoken, these products use only synthesized speech and braille output.

The reliance on the Windows keyboard shortcuts crea_c¢ ll_ost of the usability problem with these screen

readers. First, while the shortcuts provide more structural information than OutSpoken, they are designed to

be augmented with the information in the visual display.

A more troublesome problem is that the shortcuts only allow the user to navigate to graphical objects that

accept user input. Areas such as greyed out buttons and message bars are "invisible." In order to access read-

only information, the user must define view areas by a row-column position per application. The user can

then create keyboard macros to read the information at a particular view area. These view areas are defined

in a separate file or application profile, and this process requires the assistance of a sighted person.

MODELING GRAPHICAL INTERFACES

Determining the Contents of the Interface Transformation

To motivate creating a model of a graphical interface, we examine a typical graphical interface as shown in

the following figure. The question to be answered at this stage is:

"What are the characteristics and components of this interface that are critical to its use?"

In contrast to the previous discussion on the advantages of graphical interfaces, during this section we need

to categorize information about graphical interfaces that will be stored in our model.

What are the objects?

A fundamental notion behind graphical interfaces is that the user directly interacts with things: objects or

interactors that can be manipulated by the user in a set number of ways. In the example, there are a number

of objects such as windows, radio buttons, push buttons, scroll bars, editable text areas, and read-only text

areas such as message bars. These objects form the basis for how we conceptualize a graphical interface.

Selected
radio
button _ iP2;Lql,. .ll l

$_t== Natl lax

Cu'v.qmt. ==eMSe heaz_s. .

0 2 kth _tt Sun Nov 27 01:06 8/193 mot, h_ _ ,,m_,o_

0 3 lieth _tt Sun Nov 27 00:. 12/283 t.t M_M_ n_r t/_m
0 4bth RiF_tt St_ Nov 27 00:,_,g 12/307 t4mt _ ncmber _tve

0 5 bth I_-,_t Sun Nov 27 01:06 0/105 dtm_j msose

0 6 Beth _tt Sun I_ 27 01:06 _ reoll_l bertr_ dmm.j m
0 7 Itet_h IV_tt k _ 27 01:03 12/298 t4mt m mJda_ t_o

0 O Beth _tt Sun No,, 27 01:0(; 8/192 bor_ dv_j m_MSe

0 9 Beth I_r_tt Sun I_ 27 01:o6 (VI_ borlr_ dLmme
0 10 Beth I_._.t _ Nov 27 01:04 12/281 test _ _ FLour

0 11 Bet_ HM_4tL Sun Nov 27 _:_ 12_'/7 t4et mcMge n_ber one

FIGURE 3: Annotated Graphical Interface

• ,'_ Message bars
• am_ (read only
• text)

Push buttons
_" grouped

together

- _ Popup
window

What are attributes of the objects?

Most interface objects are characterized by a number of visual attributes that help clarify their use. For

example, many interactors can be highlighted (often indicating a current selection) and greyed out

(indicating that the object is unavailable for use).

The relative sizes of different objects may be informative. In the screenshot, one of the text areas is much

smaller than the others. This size indicates the type of text presented in this space, in this case, short

diagnostic messages. Other size attributes are related to collections of objects. For example, the four radio

|

buttons take up less space than the eighteen push buttons in the sample interface. Because sighted users

quickly scan this information, they internalize that the radio buttons represent a smaller set of choices.

Other attributes are related to the spatial distribution of objects. For example, the sample interface is meant

to be read from top to bottom, left to tight, following Western reading conventions.

What are the affordances of the objects?

Objects in graphical interfaces can be categorized by their basic functionality. Many objects provide a means

to group other objects. In this example, both windows and boxes collect objects into meaningful groups.

Users interact with objects in graphical interfaces in a set of predetermined ways. For example, a host of

button objects support different forms of selection.

Text objects support the entering and manipulation of textual information, although the behavior of a text

object can be constrained to indicate information about its contents. For example, the text in the first, large

text object of the pictured interface, supports selecting a line of text since those lines represent email

message headers. Some text objects support reading, but not editing of their contents.

What are the relationships between objects?

Another important question is how does the user perceive that objects are related to each other. Commonly,

relationships are expressed via grouping. For example, the four radio buttons are not randomly scattered

throughout the interface but _._regrouped together. In general, hierarchical relationships among objects

inform us about the structure of the application interface. As already discussed, windows, boxes and white
space convey groups of related objects.

Another primary relationship is cause and effect. In the example, selecting the push button "reply" causes

the dialog box to be popped up, Selecting a message header causes the message to be displayed. If the

interface response time is short, the user will associate these objects as having a cause-and-effect

relationship.

What are the names of objects?

Although not visually depicted, many objects in the graphical interface have common names associated with

them such as window, push button, and scroll bar. Since sighted and blind users will need to communicate

with each other about application interfaces, it is necessary to retain naming conventions.

Completeness?

Is our model of the _graphicai interface complete? Depending on how we represent the model of the graphical
interface with auditory cues, it may appear that we are discarding information in the graphical presentation.

For example, we may not attempt to present objects at specific x,y location, but we may use the x,y

coordinates to help determine the order of objects in the auditory interface. Likewise, we may not convey the

amount of overlap between partially occluded windows, but we will likely support the notion of focus in the

auditory interface.

There will likely be information in the graphical interface not conveyed in the auditory interface such as line
width or color when these attributes do not convey information. The difficulty is determining, given a

genetic transformation, when the visual attribute is not meaningful.

Additionally, there are characteristics of the graphical interface that are difficult, if not impossible, to convey

in an auditory interface, such as a persistent overview of the interface. How information about the graphical

interface is utilized is determined by the underlying representation of the interface. In the next section, we

compare three potential classes of models that could be used to represent the information about the graphical

interface. This model provides the basis for the auditory interface.

Modeling ttm GUI

The next step in the design process is determining a model for graphical user interfaces. Since the model

impacts both the user interface as well as the system design and implementation, it is necessary for us to
consider the following questions when evaluating possible models:

• How well does this model capture important GUI characteristics?

• What kinds of auditory interfaces could be based on this model?

As an extreme example of a possible model, we could attempt to represent the GUI interface with musical

notation. Although it would be easy to create an auditory interface based on musical notation, it would be

quite difficult, if not impossible, to represent GUI characteristics with musical notation.

During this discussion, we compare three types of potential conceptual models. These are:

• Spatial Models

The graphical interface is modeled as a 2 1/2 dimensional projection in space easily capturing aspects
of the GUI such as the spatial distribution of objects. This model is primarily used by commercial
screen readers.

• Hierarchical Models

The graphical interface is modeled as a hierarchical structure, such as a tree or outline easily

capturing parent-child grouping relationships. Most phone-based auditory interfaces utilize

hierarchical interfaces implemented with menus.

• Conversetlonel Models

The graphical interface is modeled as a dialogue where the user can converse with the auditory

interfaces. Natural language understanding coupled with voice recognition systems are used to

implement these interfaces.

Spatial

• ¢t: b_'t¢@ I "

m,,_-t-_: ,, II _'":

Hierarchical

xmailtool

Conversational

"Read email"

"Delete message"

"L/st appointments
forl_es_y"

FIGURE 4: Possible Conceptual Models for Graphical Interfaces

Assessing Spatial Models

Using spatial models to represent graphical interfaces is attractive since graphical interfaces are presented

using a spatial metaphor. The sighted user is presented with a spatially arranged picture of interface objects

that can stack on top of each other in a 2 I/2D fashion. Many of the advantages of graphical interfaces,

10

discussed previously stem from their static, spatial presentation. Obviously representing the graphical

interface with a spatial model is not difficult, so the remaining question is what type of auditory interface
could be based on this model.

The major difficulty with spatial models is that auditory interfaces are limited in their ability to present
information spatially. Since 3D spatial sound systems cannot be used to produce a one-to-one mapping of

the visual space to an auditory space, it would be necessary to present an abstraction of the graphical display.

Just as maps serve as abstractions for physical space, the goal would be to create an auditory abstraction for

the graphical space. Although this approach is feasible and worth future investigation, the analysis of

existing screen readers points to two problems with this approach.

First, as discussed during the review of screen reader interfaces, blind users find it difficult to work with

spatially arranged user interfaces. Many users conceptualize the interface based on its logical structure and

then attempt to memorize the spatial presentation. Although it is clear that blind people can successfully

navigate physical spaces such as their home, one user likened working with a graphical interface with trying
to navigate a large, unknown room where it is "easy to get lost and become disoriented [7]."

Second, although one could argue that existing screen reader interfaces have not provided the right spatial

abstraction for a graphical interface, finding such an abstraction is difficult because graphical interfaces have

been optimized for visual presentation. The need to fit the graphical interface into a limited visual space

results in spatial layouts that are not informative, but are the result of conserving screen real estate. In a
generic analysis of an X Windows graphical interface, it is impossible to determine when spatial layouts are

informative. Although current screen reader interfaces have attempted to provide the benefits of a spatial

organization, their users more often are confused by spatial arrangements that convey no meaning.

Assessing Hierarchical Models

Many auditory interfaces are based on hierarchical models[21][26]. For example, interfaces for voice mail

allow the user to navigate through a hierarchy of choices for listening to and deleting messages. Hierarchical

models are used because they can abstractly represent groups. It is also relatively easy to navigate these

auditory interfaces using keypad or voice input, although the requisite path from one object to another may

be lengthy. Since hierarchical structures represent discrete, as opposed to continuous, values, they are well

suited for conveying discrete objects.

Given that there are previous examples of complex, hierarchical auditory interfaces, the primary question is

how well graphical interfaces can be modeled using a hierarchical structure. A tree-structure representation

of the graphical interface in Figure 3: "Annotated Graphical Interface" is shown in the following figure. The

tree structure lends itself to representing the objects in their interface, as well as the parent-child

relationships between those objects. Cause-and-effect relationships can be modeled as additional links in the

structure. In the example, pushing the reply button causes the pop-up dialogue to appear.

A significant limitation of this model is that it does not capture visual attributes of the graphical interface.

Some representations of visual cues are possible. For instance, the ordering of objects in the structure can be

based on their spatial arrangement in the graphical interface. Likewise the size of grouping objects, such as

windows, is partially represented as the number of children. Nevertheless, this model suffers from its

inability to explicitly represent all the visual characteristics of the graphical interface, These characteristics

can be stored as attributes of the objects in the hierarchical structure. The auditory interface would be

responznble for conveying these attributes, in addition to conveying the underlying model.

Assessing Conversational Models

Another class of auditory interfaces commonly uses conversational dialogues as the basis for the user

interfaces[21][26]. For example, both Stifelman's Conversational VoiceNotes [28] and Yankelovich's

SpeechActs[29][30] utilize voice recognition technology as the primary means of input to an auditory

interface. VoiceNotes provides an interface to a hand-held notes organizer while SpeechActs provides an

interface to desktop applications such as email and calendar. Typical user input phrases are:

11

xmailtool
Parent-child relationship

Cause-effect relationship
main window

container label

next _" text

pop-up

I
window

send cancel

FIGURE 5: Partial Tree Structure Representation of Graphical interface

List notes for July 12th

New appointment with Jim Foley this Friday at 3pro

Both of these interfaces are replicating functionality that can be found in a graphical interface. SpeechActs is
actually a front-end for graphical desktop programs. Given that it is possible to create useful auditory

interfaces using conversational models, the remaining question is how does this model work with our goal of

modeling graphical user interfaces. There are two problems with using these models for our task:

• Requires Domain Knowledge

The example input phrases above illustrate that these interfaces rely on understanding the domain of
the application interfaces. In our automatic analysis of graphical interfaces, it is unlikely that we will

obtain sufficient information to build a domain-dependent dialogue.

• Interaction Significantly Different than Graphical Interface

Sighted users and blind users will not have the same building blocks for discussing how to operate an

interface since the conversational interface hides components of the GUI such as menus and buttons.

Choosing a Model '

We have based our representation of the graphical interface on a hierarchical conceptual model since best

captures the underlying structure of the graphical interface without requiring domain-specific knowledge of

the graphical application. The primary relationship represented in the hierarchical model is the parent-child

relationship between interface objects. These relationships appear to be the basis for how blind users

conceptualize graphical interfaces. In many ways, they are likely to be the basis for how all users

conceptualize graphical interfaces given the importance of structural information in this class of interfaces.
Spatial organizations are problematic since graphical interfaces typically generate spatial layouts based on

space-conserving constraints that are often confusing for blind users. Conversational models require domain

knowledge to capture the functionality specific to the application interface. This information would be

extremely difficult, if not impossible, to obtain from a generic X Windows application.

One important limitation of the hierarchical model is that it does not effectively capture the power of a

visual, spatial presentation. Two advantages of the visual interface are that the user can quickly recognize

interface objects from the bit mapped pictures on the screen, and that the user can quickly scan the collection

of onscreen objects. Therefore, two critical requirements of the design are that the user can quickly

recognize interface objects and that the user can quickly survey the contents of the interface.

12

MERCATOR INTERFACE DESIGN

In this section, we describe the basic interface design for Mercator. The primary question that we address is:

Given the hierarchical model of the graphical interface, what auditory interface do we present

for a blind user?

The inherent disadvantage of all auditory interfaces is they are largely invisible. For this reason, a significant

portion of this design will focus on conveying the contents of the auditory interface. Users must be able to

determine the identity and attributes of the various objects that make up the auditory interface.

In addition to recognizing individual objects, the user must be able to navigate the space of the interface. The

controls for navigation must support the user's mental model of the auditory interface. For example, moving

the mouse cursor across a graphical screen supports the notion of the interface as a picture in 2D space.

Navigation must be safe so that navigation is orthogonal to manipulating the user interface.

After users are able to navigate the auditory interface and identify the objects within it, they need the ability

to manipulate those objects to accomplish their tasks. The most common manipulation is the ability to

select an object whether it is a menu button or a text field. In the graphical interface, selection is generally
accomplished by clicking on a mouse button. When we manipulate an interface, changes in the interface

convey feedback as to the ramifications of our actions. The auditory interface must also provide conventions

for manipulating the interface and providing feedback to the user.

Conveying Auditory Objects

To convey the contents of the auditory interface, it is necessary to convey the types of objects in the interface

as well as attributes and affordances of those objects.

Conveying Object Identity

Numerous strategies for conveying objects in auditory interfaces have already been suggested by previous

work. Possible strategies include using speech, pure tones, careens, or auditory icons. For example, an
auditory cue to convey a text-entry field could be:

• A synthesized voice saying"text-entry"

• A pure tone such as G-sharp (~ 415.3047 Hz)

• A musical timbre of a violin

• The sound of an manual typewriter

Each of these approaches has advantages and disadvantages. The speech message is unambiguous and

reasonably efficient, but may be confused with other speech messages, i.e. reading the label on the field. A

pure tone is easy to produce and takes minimal time to hear, but may be confused with other pure tones. Also

the mapping of the note G-sharp to a text-entry field would be difficult to remember. Various musical timbres

would also be easy to produce, and would be easier to discriminate than pure tones, but again, the mapping

from violin to text-entry is hardly intuitive.

This design is based on the premise that auditory icons [14] offer the most promise for producing

discriminable, intuitive mappings. In the previous example, the sound of an old-fashioned typewriter maps

easily to a text-entry field. The user is reminded of typing or entering te_t. !n general, the use of auditory

icons mimics how information is conveyed in graphical interfaces. We recognize many objects in graphical

interfaces by their physical appearance. Sometimes concrete representations are used such as the picture of a

trashcan. Abstract icons also leverage our understanding of the physical world. Although Motif push buttons

do not look like button controls in the physical world, they look pushable. Likewise, an auditory icon may

not sound like a real push button, but the sound may indicate an object that can be pushed.

Two alternate design strategies that were considered and discarded were using speech or earcons.

Synthesized speech is required for presenting textual information in the graphical interface. This information

13

is domain-dependent, such as the text in an electronic mail message or the labels on a pull down menu. By

relegating speech to domain-dependent information, and respectively relegating nonspeech cues to domain-
independent information, the user can more easily separate these classes of information 1. The structured

combinations of musical sounds employed in earcons[2][3][4] have been successfully used in providing

access to mathematical equations for blind users[27]. That use of earcons was especially compelling since

the natural prosody for reading mathematical equations mapped well to the rhythm of presenting successive

earcons. In Mercator, the primary role of the auditory cues is to convey the types of objects in the graphical
interface. We concluded that iconic, everyday sounds would be more intuitive than abstract, musical sounds.

In Mercator, we use a set of auditory icons to convey the identity of various interface objects. Some auditory
icons are fairly concrete like the typewriter and the printer, while the sounds for various buttons are more

abstract. The following table provides a listing of some of the auditory icons used in Mercator. The selection

of sounds was based on a series of experiments exploring how people describe sounds and how they map
concepts in graphical interfaces to sounds. These experiments are discussed in [23][24].

TABLE 1: Using Auditory Icons to Represent Interface Objects

Interface Object Sound

Editable text area

Read-only text area

Push button

Toggle button

Radio button

Check box

Window

Container

Pop-up dialog

Application

Conveying Object Characteristics

Typewriter, multiple keystrokes

Printer printing out a line

Keypress (ca-chunk)

Pull chain light switch

Pa pop sound

One pop sound

Tapping on glass (two taps)

Opening a door

Spnng compressed then extended

Musical sound

From our model of the graphical interface, we know there are many characteristics of the interface objects

that we need to con_'ey to the user. The use of auditory icons often serves to convey the affordances of the

objects as well. For example, the typewriter sound should convey the affordance of entering text just as the

push button sound helps convey the notion of pushing. But there are other attributes of objects we need to

convey such as its label, whether it is greyed out, and its relative size.

Text-based attributes can be presented via synthesized speech. For example the auditory icon for a push

button can be presented simultaneously with its text label. Other attributes can be presented by modifying
the base auditory icon.

Auditory icons are not limited to simply reflecting categories of events and objects, but can be parameterized

to reflect their relevant dimensions as well. For example, the auditory icon for a file can be manipulated to

convey the size of the file [15]. Gaver's techniques for parameterizing auditory icons are similar to the

fihears described by Ludwig, Pincever and Cohen [19][20]. We used the following fiitears because they
could process sounds in real-time2:

Since speech sounds are often less ambiguous than nonspeech, everyday sounds, speech output plays a role in
supporting first-time users. We use redundant speech output to help users learn the meaning of the different
nonspeech cues. The design of user levels is discussed later in this paper.

14

• Muffling

High frequency energy in the auditory cue is removed, causing the cue to sound deeper in pitch with

reduced intensity.

• Thinning

Low frequency energy in the auditory cue is removed, causing the cue to sound higher in pitch with

increased intensity.

By combining these filtears with modifying the overall intensity of the sound, we can create the impression

of an auditory object being selected or greyed out.

Since muffling or thinning a sound affects our perceived pitch of the sound, we use these filtears to modify

other auditory icons where the pitch of the auditory icon can be associated with its size or spatial location. If

we strike two metal bins where one bin is much larger than the other, the sound of the larger bin will have a

lower perceived pitch. Containers are objects in Mercator that group other objects, such as a collection of

push buttons. The auditory icon for a container is an opening door. We modify this sound to indicate the

number of items in the container. We use the same technique for text areas, so that the perceived pitch of the

typewriter is based on the number of lines.

Sometimes it is helpful to convey the spatial location of an object or its position in a serial order. We modify

the cursor sound to indicate how many lines down the cursor is in a textual list. We also slightly modify the

sounds of grouped buttons indicating a button's location in the serial order. The modification is slight

because extreme modifications are reserved for conveying the selection state of a button (selected, normal,

greyed out).

TABLE 2: Manipulating Auditory loons to Convey Object Attributes

Object Attribute Description of Filter

Button controls

TeXt _ea

Container

Cursor

Selection state (highlighted.
normal, or greyed out)

Number of lines

Number of children

Location in serial order

Thinning and increase intensity for high-
lighting, muffling and decrease intensity
for greyed-out

Lower pitch maps to greater number of
lines, use muffling or thinning

Lower pitch maps to greater number of
children, use muffling or thinning

Lower pitch maps to greater number in
order, use muffling or thinning

Navigation

In addition to recognizing individual objects, the user must be able to navigate the space of the interface. The

controls for navigation must support the user's mental model of the auditory interface. For example, moving

the mouse cursor across a graphical screen supports the notion of the interface as a picture in 2D space.

Since the conceptual model of the auditory interface is a hierarchical structure, the navigation controls

should map to moving throughout that structure. For the controls to feel automatic, it is necessary for the

meanings of the controls to be consistent throughout the interface, just as moving a mouse is consistent

across the screen. This design is in contrast with typical phone interfaces where the meaning of the control

(Press 1 to do this) is often context dependent.

Another comparison to mouse navigation is that navigation must be safe in the sense that it is orthogonal to

manipulating the user interface. When users move a mouse across the screen, the interface may respond to

2. Facilities for muffling and thinning audio samples, as well as for playing, mixing and interrupting sounds was
provided by NetAudio II, a tool developed by David Burgess [6].

15

give more information, but users are generally safe from triggering potentially harmful events such as

stopping or starting an application. To support this separation, the navigation controls need to be distinct

from the controls used to select or otherwise manipulate objects.

In Mercator, at the simplest level, the user uses the arrow keys on the numeric keypad to navigate a tree

structure that corresponds to the condensed, hierarchical model of the graphical interface. The user presses

up and down to move in and out of groups of objects and presses left and right to move within groups of

objects. When the user moves to an object, they hear the auditory icon (possibly filtered) for that object. If

the user attempts to move in a direction where no object exists, e.g. moving right when you are at the end of

a cluster of push buttons, they hear a simple error sound of a bali bouncing against a wail. The premise is

that the users reinforce their mental model of the auditory interface since the navigation is explicitly based
on the hierarchical structure.

For the graphical interface pictured in Figure 3: "Annotated Graphical Interface" whose respective tree

structure in shown below, a user navigating from the top of the structure to the push button "delete" would
hear:

[] (Down) Tapping on glass

_'] (Down) Opening door

_ Right) Printer "System Mail Box"(Right) Printer "Current message header"
[] (Right) Typewriter

[] (Right) Opening door
[] (Down) Key press "next"

[] (Right) Key press "delete"

xmailtool

main window

contm_

next delete reply

[]

FIGURE 6: Navigation Based on Application Structure

This technique would be tedious if the user had to listen to the entire auditory icon each time they moved to
an object. Although the auditory icons are short, average of one second, they are interruptible within

approximately 50 ms. This set-up allows the user to quickly move throughout the interface. Also, it is

important to remember that the navigation controls are consistent throughout the interface. Expert users

seem to exhibit a form of muscle memory where they quickly press a sequence of keys to jump to parts of

the interface. Some users even orient themselves by quickly moving to an "edge" in the tree structure,

hearing the out-of-bounds sound, and then proceeding. Overall the feel of the navigation is quick and

responsive.

Navigation Shortcuts

The persistent image of the graphical interface coupled with mouse input allows sighted users to quickly

move from one portion of the interface to another. Even though Mercator users can quickly move throughout

the interface, it is beneficial to provide keyboard shortcuts for expert users. One useful shortcut is the ability

to move to the beginning, or end, of a group of objects. This jump is accomplished by hitting the 1 and 3 key,

respectively, on the numeric keypad. The user hears quick snippets of the auditory icons for the objects that

are "passed over" by using the short-cut.

Although the user could switch between applications by navigating to the "top" of an application and over to

the next application, the user can press the right or left arrow key coupled with the Shift or Alt key to switch
between applications. When the Alt key is used, the user is moved to the "top" of the next application. When

18

the Shift key is used, the user is moved to their last location in that application saved from the last time they

used that application. This control helps the user recover their working context within an application. When

the user switches between applications, they hear a paper flipping sound that should remind the user of

switching between tasks, as well as the windows that are popping to the front of the screen contents. The

new application name is announced with a message, such as, "Framemaker is the current application."

The user can also set hot keys for the row of keys above the numeric keypad. These keys can be used to

move to a designated spot in an application interface that is specific to that application. The numeric keypad,

annotated with the navigation controls, is pictured in the following figure.

Num

Lock

UsGr

Macro

S.Prev App
A.Prev App

(top)
4

0
Ins

Jump
Back

User

Macro

Curvent

S - Preview

Down

2

Stop Speaking

User

Macro

Right
S-Next App

A-Next App
(top)

6

Jump
Forward

Enter�Exit
Text Area

Del

User

Macro

Select

Enter

FIGURE 7: Mercator Navigation Controls

Although the navigation short-cuts assist the user in moving quickly throughout the hierarchy, they still do

not afford the same freedom as quickly moving the mouse from one part of the screen to another. Different

interaction styles not explored in this research include using a spatial model for the interface where the user

could operate the mouse to move from one portion to another. Likewise, a tactile interface representing the

tree structure could be used to provide a persistent overview as well as a medium for large jumps in the
interface.

Auditory Preview

One limitation of auditory interfaces is the difficulty in presenting an overview of the interface contents.

When sighted users look at a graphical interface, their eyes can quickly scan the interface to get a rough
determination of its contents. Sometimes they can tell if they are where they want to be by the visual features

of the interface. This technique applies to reading text as well. Robert Steven's [27] design of an auditory

preview of mathematical equations can be applied to previewing portions of the Mercator interface. An

auditory preview is simply short snippets of auditory icons that are played in quick succession. By the

17

overall length and diversity of sounds in the preview, the user gets a rough sense of the contents. The user

can ask for previews of any group of objects, for example, objects grouped in a container or in a pop-up

dialogue.

Sometimes the user does not need an auditory preview, but simply needs a reminder about the current object.

In a visual interface, we can look away and then look back, regaining our visual focus. A user of an auditory

interface may also need to regain the auditory focus. By pressing the 5 key, the user hears the auditory cue

(may be a combination of nonspeech and speech output) for the current object. The inclusion of this feature

is a simple example of learning from user feedback. The first Mercator interface did not include this control,

and users (including us) would navigate away from and then back to the current object to regain the auditory

context.

Manipulating the Interface and User Feedback

Up to this point, the description of the user interface has focused on the user perceiving and navigating the

contents of the auditory interface. The next step is allowing the user to manipulate the interface. In this

section, we describe how the users manipulate Mercator interfaces, as well as the feedback that the user

receives from Mercator. The auditory feedback cues used in Mercator are summarized in Table 3:

"Nonspeech Auditory Feedback in Mercator."

Selection

A principal action that users perform with graphical interfaces is selection. The action is typically
accomplished by clicking (or double-clicking) on an object with the mouse. Since the Mercator user is

working with the keyboard and not with the mouse, mapping selection to a keystroke reduces the distance

that the users's hand must move. In Mercator, pressing the Enter key on the numeric keypad is mapped to

selecting an object. Mercator can determine what mouse events the application expects (e.g. single or double

click) and then simulate those events for the application.

Given the limitations of manipulating sampled sounds, creating pairs of sounds for {this is a push button,

you just pushed a push button} was too difficult given the set of auditory icons used in Mercator. If the user

successfully selects an object, the user will hear a short sound akin to someone ripping a batch of papers.

This sound was chosen because it seemed to imply that something was happening, indicating to the user that

the selection event had taken place. Since few users could actually identify the sound as ripping papers, they

did not express any negative connotations about the sound. A longer discussion of the action-oriented

content of sounds is presented in [23][24].

Pop-up Windows

Pop-up windows are an interesting case of the content, structure and focus of the interface changing almost

instantaneously. When a pop-up window appears, the space of the interface (its content) is now augmented

with the contents of the pop-up window. Likewise the structure of the interface, and our hierarchical model,

is augmented by the structure of the pop-up. Often the input focus of the interface is moved to the pop-up as

well, for example, modal pop-ups that require users to confirm or cancel an action before proceeding.

In graphical interfaces, pop-up windows capture the user's attention by being drawn on top of the other

windows. In Mercator, whistling sounds are used to notify the appearance or disappearance of a pop-up

window. A whistling sound with a rising pitch indicates that a pop-up has appeared, while a descending

pitch indicates that a pop-up has disappeared. If the input focus is shifted to the pop-up, the user is moved to

that location in the application tree structure. This move is indicated by the auditory icon for the pop-up

window, a springy sound. There is a deliberate attempt to reinforce the terminology of pop-up window with

these sounds. Both the whistling and spring sounds help form the illusion of something popping up in front

of you.

18

When the user dismisses a pop-up, they are placed in their original location, where they were before the pop-

up appeared. For example, in the Figure 3: "Annotated Graphical Interface", when the user presses the reply

push button, they hear the following sounds as the pop-up appears on the screen:

"Rip" the selection is successful

"Whistle-up" the pop-up appears on the screen

"Spring" the user is moved to the top of the popup structure

If the user navigated to the cancel button, selecting that button and thereby dismissing the pop-up, they

would hear:

"Rip" the selection is successful

"Whistle-down" the pop-up disappear from the screen

"Ca-chunk Reply" the user is moved back to the reply push button

Pop-up windows are stored in the interface model as descendants of the uppermost node of the application

tree structure since they are perceived as separate windows on the screen. When the pop-ups are not modal,

the user can navigate up out of the pop-up and back to the main application structure. If the pop-up is modal,

such as requiring a confirm or cancel operation, the user is not allowed to navigate out of the pop-up,

retaining the semantics of the interface.

TABLE 3: Nonspeech Auditory Feedback in Mercator

Action Nonspeech Auditory Feedback

Selection

Switching between applications

Navigation error

Entering text mode

Moving edit cursor in text area

Popup appearing / disappearing

Application connecting to Mercator

Application disconnecting

Ripping papers

Paper shuffling

Ball rebounding against wall

Rolling / rocking sound (drawer pulled out)

Click (pitch based on position in text)

Whistle up/down

Winding

Flushing

Interacting with Text Objects

Screen readers for text-based interfaces, such as the command line interface to DOS, have existed for many

years. These interfaces have formed a set of standard requirements for reading and manipulating text areas I.

One requirement is support for two "cursors," an edit cursor that is located at the insert position in the text,

and a review cursor that can be moved independently to read portions of the text. Operations for moving and

synchronizing the cursors are coupled with operations for reading text by character, word, line, sentence and

paragraph. Different filters are used to parse and pronounce the text based on the current task requirements.

For example, a Unix filter can be used so that the command:

more dissertation.text I grep Mercator

would be read as:

more dissertation dot text pipe grep Mercator

1. Although there is not a paper detailing requirements for text-based screen readers, we were able to determine the

needed functionality by examining existing screen readers and talking with blind computer users.

19

To review a text area, the user is required to enter "text mode" by pressing the ./Del key. For example, when

the user navigates to a text area (hearing the typewriter sound), they then press the ./Del key to enter text
mode. This operation is accompanied with a rolling/rocking sound to indicate moving into a different state.

While in text mode, the keys on the numeric keypad are mapped to operations for reviewing text. The users

can return to navigating the interface by exiting text mode, again pressing the ./Del key and hearing the
rolling sound.

Some of the commands provided in Mercator for reading and manipulating text are summarized in the
following figure.

Num
Lock

Read Sent
S-Read Next

Back Word
S.Back Char

4
i

Read Char
S-Read Next

0
Ins

Up Line
S.Up Sent

A.Up Pars

Read Line
S.Read Next

Down Line
S-Down Sent

A.Down Para

2

Stop Speaking

Read Para
S-Read Next

Forward Word
S-For Char

Read Word
S-Read Next

3

Enter�Exit
Text Area

Del

Select

Enter

FIGURE 8: Mercator Text Controls

User Levels

Based on experience with demonstrating and evaluating Mercator, it became clear that the interface could be

modified to suppon the transition from a novice to expert user. The tel interface code was easily extended to

support three user levels (Novice, Intermediate, Advanced). The primary modifications focused on

information presented to the user when they navigated to an object, and when they requested information

about an object. Based on observations of people using Mercator, three stages of learning became apparent.

• Recognizing auditory Icons

The users learned the sounds for push buttons, text areas and so on.

• Parameterized auditory icons

The users learned how the auditory icons are manipulated to convey attributes of objects such as a

push button being greyed out.

• Understanding modes

Users learned that they have to enter "text mode" to review the contents of a text area.

Ill

20

The current user level determined the amount of redundant speech information. What the user would hear,

per user level, after navigating to a greyed out push button labeled undelete, is shown in the following table.

TABLE 4: Interface Output for Push Buttons Per User Level

Novice

Intermediate

Advanced

Push button (mu_ed ca-chunk sound) undelete gr_'ed out

(rnu,O_edca-chunk sound) undelete gr_'ed out

(mu_ed ca-chunk sound) undelete

When the user asks for information about an object by pressing the 5 key, they hear the information

corresponding to one level less experienced than their current setting. This strategy helps users transition

between levels. For example, a user can switch to operating as an Intermediate, but still get additional

information for objects that they have forgotten or have not encountered.

ASSESSING MERCATOR'S INTERFACE

During the course of this research we have utilized many methods for assessing Mercator's design including

discussing our design with users and other designers, observing people using Mercator as well as observing

how people teach others to use Mercator, and measuring the performance of people conducting specific

tasks. To collect quantitative data on the learnability of Mercator, we measured how quickly sighted users

reached peak performance in a specific task of reading and replying to email messages using a graphical

email application. One motivation for using sighted people in this experiment is that we also examined the
effects of transitioning between using the graphical and auditory versions of the same application.

We have also compiled reactions by blind users that we have received over the past three years. We did not

perform controlled experiments with blind users for two reasons. First, previous experience with computers

appears to be an overriding factor in how well blind users perform with screen readers for graphical

interfaces. It would have been difficult to control previous experience so that performance data would be

meaningful across subjects. Second, the available sample of blind users in the Atlanta area generally had no

computer experience. In contrast, users attending conferences for assistive technology, generally had
comparable experience with computers and were motivated to use graphical interfaces. We discussed

Mercator's design with potential users at over ten conferences that included an emphasis on assistive

technologies. At three of the these conferences, Mercator was available for use over multiple days among the

product exhibits. F_om these experiences, we have summarized favorable and critical assessments of
Mercator interfaces.

Measuring Performance with Mercator

Having already observed that blind users could learn to use Mercator, we wanted to assess how well sighted

users performed with Mercator for two reasons. First, we needed a controlled setting in which we could

measure the time needed to learn to use Mercator. Based on demonstrations with blind and sighted users, it

appeared that computer literate sighted users took longer to learn the interface than computer literate blind

users, but that the stages of learning were the same.

Second, we wanted users to contrast their use of a graphical interface and the Mercator-derived auditory

interface. One hypothesis was that experience with the graphical interface would be beneficial in using the
auditory interface since the two interfaces share the same structure.

In order to assess users' performance with the auditory interface, as well as determine the effects of prior

experience with the graphical interface, test subjects worked with graphical and auditory versions of the

application xmaiitool. A screen shot of the graphical interface is shown in Figure 3: "Annotated Graphical
Interface".

Quantitative data was calculated from analyzing activity logs. The logs indicated each time an event had

occurred in the interface, such as moving to a new object, entering or exiting text mode, or selecting an

21

object. With the subjects' consent, we videotaped the sessions including training and debriefing in addition
to the test trials.

Seventeen subjects worked with combinations of the graphical and auditory interfaces. The subjects were

randomly divided into four groups as shown in the following table. The group designation determined which

interfaces they used, and in what order. For example, in Group 2, the subjects started with the graphical

interface, but switched to the auditory interface after four trials. The subjects in Group 3 only used the
auditory interface.

TABLE 8-1 Experimental Design

Part A (4 trials) Part B (4 trials)

Group 1 (3 subjects)

Group 2 (6 subjects)

Group 3 (5 subjects)

Group 4 (3 subjects)

Graphical

Graphical

Auditory

Auditory

Graphical

Auditory

Auditory

Graphical

In each trial, the subject selected, read and replied to three specified email messages.

The training for the experiment was conducted in three stages.

• Description of the Task

I told the subjects the details of the task they were to perform, namely that they were to locate, read

and reply to three specified email messages. I explained that in each message was a test phrase that
they would need to type into their reply.

• Description of the Interface

At this point, I either described the graphical interface or the auditory interface. I explained how to
navigate the interface and how to select objects.

I also showed the_subjects a diagram of the common structure of the graphical and auditory interfaces

similar to the diagram in Figure 5: "Partial Tree Structure Representation of Graphical Interface".

• Demonstration of the Task

I demonstrated replying to one email message. I went through all of the steps including writing and
sending the reply.

Learning the Auditory Interlace

The most promising result of the experiment is that all of the subjects were able to learn how to use the

auditory interface. The average time to complete a trial sharply decreased after one trial with peak

II III I

22

800
Time (s)

600

°t200

0
I

performance achieved around the fourth trial. Another important result is that the variance in time taken

sharply decreased after one trial (average of 401.33 to average of 88.96).

1200

Stages of Learning

I I I

2 Trial 3 4

FIGURE 9: Learning to use Mercator

So what did the subjects learn? From observation and inspection of the data, it appears that four concepts

were acquired in the approximate order:

1. Basic Auditory Icons

Since the subjects had only heard a brief demonstration, they needed to spend some time recognizing and
learning the auditory icons. Although ten sounds were needed in this interface, the subjects never asked what

a sound meant. They seemed to use the 5-Info key to hear the auditory icon coupled with redundant speech

information until they learned the meaning of the auditory icon.

2. Navigation

The biggest hurdle in using the interface is understanding the hierarchical navigation scheme. Subjects who
had never seen the graphical interface had to learn that the down and up keys took them in and out of groups

of objects. Improved navigation times greatly contribute to overall improved performance times. In part,

improved navigation times seemed to be impacted by how safe the users felt. As users realized that they

could navigate the interface without causing unwelcome consequences, they increased their rate of input,

"bouncing off the walls" when they went too far in any direction.

3. Parameterized Auditory Icons

As the subjects continued using the interface, it became apparent that they were learning to listen for the

pitch differences between auditory icons of the same class. For example, the reply push button is in the

container with 18 children. This container has a deeper sound than other containers in the interface.

Likewise the text areas with the headers and message are much larger than the text area with diagnostic

output. Subjects learned to listen for the container and text areas with a lower pitch helping them locate these

objects faster and more reliably.

4. Text Mode

A common guideline in human-computer interaction is to avoid modes in the interface. Mercator has one

mode and it proved problematic. When users n,_vigate to a text area, they need to enter text-mode so that the

numeric keypad can then be used to navigate the text as opposed to navigating the rest of the interface. Often
a subject would reach a text area, but not remember to switch into text mode. Common guesses were

selecting the text area and trying to navigate down into the text area (not a bad idea!).

23

Transitioning between the Graphical and Auditory Interfaces

One way to demonstrate that the auditory interface captures critical characteristics of the graphical interface

is to look for a transfer effect when the user transitions from using the interface in one modality to using the

interface in the other modality. For example, if the user has experience with the graphical interface, this

experience should help the user learn the auditory interface. Unfonunately quantitative measurements did
not demonstrate that such an effect took place. There are two reasons related to the experimental design that

may help explain why the transfer effect was not evidenced:

• Exposure to Interface Structure

During the training, I showed all of the subjects a diagram of the interface structure. Users of the

graphical interface paid little attention to the diagram. In contrast, users of the auditory interface

studied the diagram and indicated that they would have preferred to consult the diagram during the

task. The information in that diagram is in essence the information that should cause a transfer effect.

Experience with the graphical interface should give the user information about the structure of the

interface. By showing the diagram to the users of the auditory interface, I accidently gave those users

the same information that the transfer effect is based on. Therefore the effect was hidden by the
improved performance of the users of the auditory interface.

• Graphical Task Too Easy

Performing the task with the graphical interface required little cognitive effort. The performance

times increase over the trials is likely due to boredom. The subjects spent most of their time trying to

determine what I was actually testing them on. One subject asked me if I was manipulating the lights

in the room. Since they did not have to think about the task, they internalized little information about

the content of the graphical interface.

During the debriefing, subjects who first used the graphical interface and then used the auditory interface

made three interesting observations:

• Exposure to Graphical Interface Helped in Using Auditory Interface

Although not evident in the quantitative analysis, the subjects reported that their experience with the
graphical interface was helpful in understanding the auditory interface. Aspects of the graphical

interface that were helpful included knowing the objects in the interface, the spatial ordering of the

objects, and the relative sizes of objects.

• Subjects Needed/to Update their Simple Model of the Interface

Although subjects reported that their exposure to the graphical interface was helpful, they remarked

that they needed to form a more complex model of the interface when working with the auditory
interface. They did not describe forming a new model, but augmenting their simple model with more

information. For example, in the graphical interface, the subjects could easily ignore a number of

objects in the interface. Since they had to navigate past these objects in the auditory interface, they

needed to augment the interface model with these objects.

• Initial Transition Between Spatial and Hierarchical Was Difficult

Since the subjects had a fresh visual image of the graphical interface in their minds when they began

working with the auditory interface, they typically tried to navigate the interface based on the spatial

layout. Most of the interface objects are arranged top to bottom in the gral;hical interface, but since

they are sibling objects, they are accessed by moving left and right in ,he auditory interface.

Navigation errors from trying to move in spatial directions generally disappeared during the first trial.

24

Observation= by Blind Users

Reactions to Nonspeoch Auditory Cues

Blind users have expressed an overwhelming positive response to the use of everyday sounds in screen

reader interfaces. As noted previously, users of current screen readers have difficulty separating interface

information, such as "Push Button'" from application information, such as "Edit," when both types of

information are presented with speech or braille. When blind users were able to work with and listen to the

Mercator interface, they remained impressed with the use of everyday sounds. In addition to particularly

liking the typewriter and whistle sounds, in contrast to sighted users, blind users liked the container sound

and were rarely confused about its use. Users commented that the filtering of the auditory icons was subtle,

noting that many designers unnecessarily exaggerate changes in audio.

Reactions to Hierarchical Interface Structure

In contrast to the use of everyday sounds, blind users were skeptical about hierarchical navigation schemes

as presented during design briefings. The general consensus was that they needed to "know what was on the

screen" since that was what their sighted counterparts used. Only after using Mercator, did users express

their preference for this scheme.

Users have requested that Mercator allow them to print out information about the structure (object hierarchy)
of an interface using a braille printer. Users experimenting with this strategy refer to consulting the constant

tactile image while exploring the auditory interface. The tactile image seems to provide some of the

functionality that the constant visual image provides to sighted user.

A new screen reader also uses an underlying hierarchical model. The system, called Virgo, transforms

Microsoft Windows interfaces into braille interfaces. Instead of using auditory icons, the first two braille
cells contain a code that represents the type of objects, and the remaining braille cells contain the label and

highlighting information.

Meeting Goals for Screen Reader Design

After discussing the benefits that graphical interfaces provide for sighted users, we outlined six goals for

transforming graphical interfaces into auditory interfaces. Given the auditory interface design discussed in

this paper, how well does Mercator meet those goals?

• Access to functionality

By providing general strategies for representing graphical interfaces with auditory interaction

techniques, Mercator provides transparent access to applications for word processing, electronic mail,
calendars and so on. In these text-based interfaces, spatial information in the interface is generally

mapped to structural information. One exception is when domain specific information such as the text

in a document is searched spatially using the controls for manipulating and reading text.

One advantage of Mercator is that all objects in the interface are treated as first class objects. In

contrast to current screen readers, users do not have to define special view areas to access portions of

the interface that do not accept user input such as message bars.

• Iconic representations of Interface object==

When possible, interface objects are grouped into the same discrete objects that sighted users

perceive. The identify and attributes of these objects are conveyed with auditory icons. Like their

graphical counterparts, auditory icons leverage knowledge of the real world in presenting interface

output.

• Structural organization

A central motivation in Mercator's design is to convey the underlying structure in graphical

interfaces. The groupings of objects, conveyed with visual cues in the graphical interface, are made

evident as the user navigates into, within, and out of object groups. These groups help clarify the

functionality of individual objects.

[

I[

-- I III I Ill II I i i -

• Direct manipulation

As in graphical interfaces, users directly interact with objects in the interface and interface output is
conveyed via the objects. In as much as the graphical interface provides objects that match how user's

conceptualize tasks with the application, Mercator provides a direct manipulation interface.

• Spatial arrangement

A primary difference between Mercator and commercial screen readers is that Mercator is based on a

hierarchical model of the graphical interface as opposed to a spatial model. Mercator, however, does

provide information about the spatial attributes and layout of the graphical interface. The relative

sizes of objects are conveyed by manipulating their base auditory icons. Information about the layout
of text is conveyed by modifying the sound of the edit cursor as it is moved throughout the text. The

layout of objects helps determine their ordering in the auditory interface.

Nevertheless, information about the layout of the interface is lost in this representation. Likewise,

users are not able to arrange application windows along spatial dimensions. This design trade-off was
made to offset existing usability problems with commercial screen readers.

• Persistent presentation

A benefit of visual interfaces is that they exist in physical space and can be reviewed over time

creating a surrogate short-term memory for recalling the contents of the user interfaces. This type of

persistent presentation is difficult to achieve in a complex auditory interface where multiple
continuous sounds are confusing and distracting. To improve the user's scanning capabilities, we

provide the preview facility. The short snippets of the auditory cues help convey portions of the
interface, and is sufficiently succinct to confirm the user's location in the interface.

Some blind users have experimented with using braille printouts of the interface structure. The users

refer to this constant tactile image while exploring the auditory interface.

FUTURE WORK

This design is effective for blind users working with text-oriented applications such as word processors,

electronic mail and other menu and form-based interfaces. The challenge of providing access to more

graphical applications such as drawing programs remains. One area of future research is incorporating the

use of a tactile display. The auditory and tactile displays could be used to create complementary presentation
of the graphical interfaces. The tactile display would help offset some of the limitations of the auditory

interface by providipg a constant presentation of the interface as well as supporting large moves across the
space of the interface.

In many ways, this research addressed an important, but overly constraining problem of transparent access to

graphical applications. Once the constraint of transparency is relaxed, one could imagine combining aspects

of spatial and conversational interfaces into the default hierarchical interface to leverage domain-dependent
interaction. The potential of adding voice interaction is especially compelling. We have extended the

Mercator architecture to include voice as a potential input source, but we have not furthered explored its use.

The inclusion of a spatial model could aid in providing access to a broader range of applications that
inherently include spatial content such as drawing and map-based tasks.

Sighted computer users could also benefit from auditory representations of graphical interfaces while

performing eyes-busy tasks such as driving, performing maintenance on a airplane, or inspecting a

manufacturing plant. The needs of these users will be different however. For instance, supporting mobility

will likely be a key requirements. In these cases, improving the flexibility of conversational interfaces may
provide the most promise.

25

II II

26

ACKNOWLEDGEMENTS

The Mercator project represents a multi-year, multi-person effort. Thanks go to Keith Edwards, Tom

Rodriguez, Kathryn Stockton, Ian Smith, Sue Liebeskind, Sue Long, Kevin Chert, Will Luo and Stacy Ann
Johnson for their design and implementation contributions.

This research was supported by Sun Microsystems, the NASA Marshall Space Flight Center, the National

Security Agency, and Georgia Tech.

REFERENCES

27

[11

[2l

[31

[41

[51

[61

[7]

[8]

[9l

[10]

[11]

[12]

[131

[14]

[151

[16]

[171

outSPOKEN, The Talking Macintosh Interface. User Manual. Berkeley Systems. 1989.

Blattner, M., Glinert, E. R, and Papp, A. L., III. Sonic Enhancements for 2-D Graphic Displays,

Auditory Display: Sonification, Audification and Auditory Interfaces, edited by G. Kramer, SFI

Studies in the Sciences of Complexity Proc. Vol. XVIII, Addison-Wesley, 1994, pp. 447-470.

Blattner, M. M. and Greenberg, R. M. Communicating and Learning Through Non-Speech Audio.

In Multimedia Interface Design in Education, edited by A. Edwards and S. Holland, Springer-

Verlag, NATO ASI Series F, 1992, pp 133-143.

Blattner, M. M., Sumikawa, D. A, and Greenberg, R. M. Earcons and Icons: Theft Structure and

Common Design Principles. Human-Computer Interaction 4(1), 199 I, pp. 11-44.

Boyd, L.H., Boyd, W.L. and Vanderheiden, G.C. The graphical user interface: Crisis, danger and

opportunity. In Journal of 14sual Impairment and Blindness, December 1990, pp. 496-502

Burgess, D. The NA3 Audio Server. Final report to Sun Microsystems. 1993.

Day, G. Personal communication, 1995.

Edwards, A. D. N. Graphical User Interfaces and Blind People, Proceedings 3rd International

Conference on Computers for Handicapped Persons, Vienna, July 1992, pp 114-119.

Edwards, A. D. N. Evaluation of Outspoken software for blind users, University of York,

Department of Computer Science Technical Report YCS 150, 199 I.

Edwards, A. D. N. Modeling blind users' interactions with an auditory computer interface.

International Journal of Man-Machine Studies, 1989, pp. 575-589.

Edwards, W. K. and Rodriguez, T. Runtime Translation of X Interfaces to Support Visually-
Impaired Users. In Proceedings of the 7th Annual X Technical Conference, Boston, MA, 1993.

Edwards, W.K. and Mynatt, E.D. An Architecture for Transforming Graphical Interfaces. In the

Proceedings of UIST'94: User Interface Software and Technology Symposium, Marina Del Ray,
CA., Nov. 2-4, 1994, 39-47.

Edwards, W.K., Liebeskind, S. H., Mynatt, E.D and Walker, W.D. A Remote Access Protocol for

the X Window System. In the Proceedings of the 9th Annual X Technical Conference, Boston, MA,
1995.

Gaver, W. W. Everyday listening and auditory icons. Doctoral Dissertation, University of

California, San Diego. 1988.

Gaver, W.W. Using and Creating Auditory Icons. In Auditory Display: Sonification, Audification

and Auditory lnterface_, edited by G. Kramer, SFI Studies in the Sciences of Complexity Proc. Vol.

XVIII, Addison-Wesley, !994, pp. 417-446.

Glinert, E.P. and York, B.W. Computers and People with Disabilities, in Communication of the
ACM, 35(5) 1992, pp. 32-35.

HumanWare, Attic Technologies, ADHOC, and The Reader Project. Making good decisions on

technology: Access solutions for blindness and low vision. In Closing the Gap Conference, October

1990. Industry Experts Panel Discussion.

28

[18] Hutchins, E.L., Hollan, J.D. and Norman, D. A., Direct Manipulation Interfaces. In User Centered

System Design, edited by Norman, D.A. and Draper, S.W., Lawrence Erlbaum Associates, Inc.,

1986, pp. 87-124.

[19] Ludwig, L. L., Pincever, N. and Cohen, M. Extending the notion of a window system to audio.

Computer, August 1990, pp 66-72.

[20] Ludwig, L. L. and cohen, M. Multidimensional audio window management. International Journal

of Man-Machine Studies, 34(3), 1991, pp 319-336.

[21] Ly, E. Chatter: A Conversational Telephone Agent. MIT Master's Thesis, Program in Media Arts
and Sciences, 1993.

[22] Mynatt, E. and Weber, G. Nonvisual Presentation of Graphical User Interfaces: Contrasting Two

Approaches," in the Proceedings of the ACM Conference on Human Factors in Computing Systems,
i 994.

[23] Mynatt, E. Designing Auditory Icons, In Proceedings of the Second International Conference of

Auditor3' Display, ICAD '94, Sante Fe, New Mexico, 1995, pp. 109-120.

[24] Mynatt, E. Transforming Graphical Interfaces into Auditory Interfaces. Doctoral Dissertation,
Georgia Institute of Technology, Atlanta. 1995.

[25] Norman, D. A. The Psychology of Everyday Things. New York: Basic Books. 1988.

[26] Schmandt, C. Phonesheil: the Telephone in Computer Terminal. Proceedings of ACM Multimedia
Conference, August 1993.

[27] Stevens, R., Brewster, S., Wright, P. C., and Edwards, A. D. N. Design and Evaluation of an

Auditory Glance at Algebra for Blind Readers. In Proceedings of the Second International

Conference of Auditory Display; ICAD '94, Sante Fe, New Mexico, 1995, pp. 21-30.

[28] Stifelman, L. J., Axons, B., Schmandt, C. and Hulteen, E. A. VoiceNotes: A Speech Interface for a

Hand-Held Voice Notetaker. In Proceedings oflNTERCHI '93, ACM SIGCH1, 1993, pp 179-186.

[29] Yankeiovich, _/. SpeechActs & The Design of Speech Interfaces, in the Adjunct Proceedings of the
1994 ACM Conference on Human Factors and Computing Systems, Boston, MA, 1994.

[30] Yankelovich, N., Levow, G., and Marx, M. Designing Speech Acts: Issues in Speech Interfaces,

Proceedings of CHI '95, Denver CO, May 8-11, 1995.

I I II !

ULTRASONIX USER MANUAL

1.0 INTRODUCTION

1.1 About UltraSonix

Welcome to UltraSonix, a screen-reader, for X Windows applications. UltraSonix is a software

system that allows you to use many X Windows applications even if you cannot see the screen.
UltraSonix provides speech, auditory sound effects and braille output to represent the visual,

graphical interface. UltraSonix also provides keyboard alternatives to the mouse pointing device.

1.2 Learning X Windows Applications

For many users, using UltraSonix may be their first experience with accessing graphical

applications. Part of the learning process will be learning about how typical X Windows
applications work. Graphical interfaces are unlike command-line interfaces such as DOS. This
manual introduces concepts underlying graphical X Windows applications. Nevertheless, the best
way to learn is through experimentation.

1.3 About this Manual

This manual is organized into 7 sections:

1.0 INTRODUCTION

What you are reading now.
2.0 INSTALLATION

Instructions for installing UltraSonix
3.0 INTRODUCING X WINDOWS

A short review of the concepts underlying X Windows applications and GUI interfaces.
4.0 GETTING STARTED

This contains an introduction into using UltraSonix and should require sufficient instructions for
many beginning users.

5.0 BRAILLE OUTPUT

Instructions for adding braille output to UltraSonix
6.0 CONFIGURATION

/

Information for configuring UltraSonix
7.0 REFERENCE

A summary of the commands used by UltraSonix as well as the sound effects.

2.0 INSTALLATION

This section describes how to install UltraSonix on your platform, and what the requirements of
the target system are.

2.1 Platform Requirements

The UltraSonix screenreader software is designed to be run on Sun SPARCstation or
SPARCstation-compatible computers running the Solaris 2.4 (or later) operating environment.

L

Hardware and operating system requirements are:

• At least 32MB of memory recommended for best performance.
• SPARCstation 2 or better recommended for best performance (a faster machine may be

necessary if you plan on using software-based speech synthesis).
• 10MB free disk space.
• Solaris 2.4 or later.

• Either 8-bit or 16-bit audio hardware (standard on most Sun computers).
• A supported speech synthesis system (currently DECtalk DTC01, DECtalk Express, and

Entropic TrueTalk are supported).

• Either version R5 or R6 of the X Window System. The OpenWindows 3.4 (or later) window
system from Sun is recommended, and comes as the default on Solaris 2.4. If you do not run
OpenWindows 3.4, your server must support the XTEST extension. We highly recommend
using the OpenWindows server, however.

Optional supported hardware includes:

A supported Braille terminal system (currently the Alva 3-20 or Alva 3-80).
An external keyboard device (currently the Genovations device is the only supported external
keypad).

To operate with the UltraSonix software, applications must have the following properties:

• Be written to the Xt Intrinsics toolkit, version R5.
• Be based on the Motif or Athena widget sets.
• Be dynamically linked against the X libraries.
• Not have the setuid bit set (Solaris security does not support the use of shared libraries from

non-standard locations by setuid applications).

In order to compile the UltraSonix softare, you need the following:

• An ANSI-compliant C compiler (we recommend SPARCcompiler C version 3.0 or later).
• A C++ compiler with support for templates and exceptions (we recommend SPARCcompiler

C++ version 3.0 or later).
• The Rogue Wave Tools.h++ library for C++ (this library comes with SPARCcompiler C++

version 3.0 and later).
• ANSVPOSIX-compliant header files and system call interfaces.

2.2 Installing the Software

The UltraSonix software is distributed in the "package" format. Packages are a standard
mechanism for software distribution used in Unix SVR4. They provide features such as automatic
versioning, dependency analysis, and consistent installation procedures.

Solaris provides two separate tools for installing software packages. The first is a graphical tool
called swmtool. The second is the command-line pkgadd. Both are in/usr/sbin. Instructions for
using each are provided below.

Before you begin installation, you must decide on a location for the software. We recommend
installing in/opt (the standard location for "optional" software in SVR4). You can install
UltraSonix anywhere however.

NotethattheproceduresbelowassumethatyouarerunningSolarisVolumeManagement(the
VolumeManagercontrolstheautomaticmountingof floppies).

2.2.1InstallationUsingSWMTOOL

(NOTE:Installationviaswmtoolisnotcurrentlysupported.)

2.2.2InstallationUsingPKGADDfrom aTar File

Uncompressthefile GTsonicx.tar.Zvia thecommand

uncompressGTsonicx.tar.Z

andthenuntarit with thecommand

tar xvf GTsonicx.tar

Thiscanbedonein anydirectorywhichhasmorethanapprox.8meg.of storage.After this is
donethereshouldbea directorycalledGTsonicx.

Next,youmustusethepkgaddcommandto install theUltraSonixsoftwareontoyoursystem.
pkgaddis locatedin the/usr/sbindirectoryandmustbe runasroot (sothatit canupdatevarious
systemdatabaseswhichrecordinformationaboutwhatpackagesareinstalledon thesystem).

By defaultthepackagewill beinstalledunderthe/opt directory. If youwishto useadifferent
location,youmustspecifythe locationon thecommandline. To installin/opt, typethefollowing
command:

pkgadd-d<GTsonicxpackagelocation>GTsonicx

Whilewe recommendinstallingthepackagein thedefaultlocation,it ispossibleto install it in a
differentdirectory.Thefollowingcommandwill causepkgaddto promptyoufor thelocationto
installthepackage.

-apkgadd -a none <GTsonicx package location> GTsonicx

The package will be copied to the directory specified by the -R option.

I

2.2.3 Installation Using PKGADD from Floppies

Insert the floppy labeled UltraSonix 1/5 into the floppy diskette drive. The exact command
sequence you will follow depends on whether or not you're running the Solaris volume manager.
(The volume manager is the software system on Solaris which handles mounting and unmounting
of removable media. By default, the volume manager is always running.)

This document describes installation on systems running the volume manager.

To tell the volume manager to detect the presence of a floppy disk in the drive, type the following
command:

volcheck

Theinstallationprocedureis similarto theonedescribedabovebutthe locationof thepackageis
now different:

pkgadd-d/vol/dev/aliases/floppy0GTsonicx

Whilewe recommendinstallingthepackagein thedefaultlocation,it ispossibleto install it in a
differentdirectory.Thefollowingcommandwill causepkgaddto promptyou for thelocationto
installthepackage.

pkgadd-anone-d/vol/dev/aliases/floppy0GTsonicx

Thepackagewill becopiedto thedirectoryspecifiedby the-Roption.

Aspkgaddrunsit will promptyouto install theotherfour floppiesasneeded.

2.3DirectoryLayout

In thefollowing section,weassumethatthepackagehasbeeninstalledin/opt, thedefaultlocation.
If youhaveinstalledthepackagein anon-defaultlocation,simplyprependthedirectoryyou
specifiedto pkgaddto "/opt" in theinformationthatfollows.

Oncethepackagehasbeeninstalledin/opt/GTsonicx,severalsubdirectorieswill becreated.The
layoutof thedirectorystructureisasfollows:

/opt/GTsonicx/

bin/
alvad
console
dectalkd

mercator-configuration
mercator
netaudiod

runsonicg

lib/

R5/
libXl 1.so
libXt.so

R6/
liblCE.so.6.0
libXl 1.so.6.0
libXext.so.6.0
libXt.so.6.0
libSM.so.6.0
libXaw.so.6.0
libXmu.so.6.0

I IIIII I III I

R6.orig/
libX11.so.6.0
libXt.so.6.0

RAP/

libRAPagnt.so
libRAPclnt.so

loadables/

Alva.so
DectalkX.so

NetAudio.so
Dectalk.so
Genovations.so
Truetalk.so

scripts/
<all tcl files>

sounds/
<all sound files>

templates/
Athena/
Motif/

Apps/
<all templates, in subdirs>

etc/
mercator.attrib

mercator.config
default.fit

apps/

doc/

xmailtool-r5
xm'ailtool-r6
chitrivia

pizza-tool

ProcessMgmt
briefing
dectalk.txt
truetalk.txt
ScreenReader.txt

config_files
dectalkX.txt
user-manual

UsingFDInterest
console.txt

genovations.keypad
WritingLoadables
copyright
install.doc

src/
console/

console.cc
mercator-configuration/

(all sourcesfor mercator-config.)

Otherincludedfileswhichdonotshowup in theGTsonicxdirectoryare:

- pkginfo
- prototype
- postinstall
- preremove
- copyright

In orderto useUltraSonix,youmustconfigurethesystemto tell it whathardwaredevicesare
attachedto yourworkstation,andwherevariousrequiredsystemfilesarelocated. SeeSection
6.0, "Configuration,"for moredetailsonconfiguringthesoftware.

After youhaveconfiguredthesystem,UltraSonixshouldbereadyto run.

3.0 INTRODUCING X WINDOWS

[Need general description of X Windows and concepts in GUI interfaces]
Need to define:

Window
Mouse
Focus

4.0 GETTING STARTED

The best way to learn how to use UltraSonix is to start experimenting with a few applications.
This chapters leads you through a simple tutorial for learning the basic operations of UltraSonix.
does not present every feature but tries to convey the feel of using this screen reader. Pointers to
additional information are included as well.

It

4.1 UltraSonix Keypad

The majority of commands to UltraSonix are issued through the numeric keypad located at the far
right of your keyboard. Here is the layout of the standard numeric keypad:

Num Lock / *

7/Home 8/Up 9/PgUp
4/Left 5 6/Right
1/End 2/Down 3/PgDown
O/Insert ./Delete

Enter

4-

The + and Enter key are twice as long as the standard keys, while the 0/Insert key is twice as wide.

UltraSonixusestwo majormodesof operation.Thefirst modeisnavigation. In thismode,you
cannavigateto differentobjectsin thegraphicalinterfacesuchaspushbuttons,windowsandother
applications.Thesecondmodeis for readingandeditingtext. In thismode,youcansearch
throughsectionsof textaswell asentertextualinputfrom thekeyboard.In navigationmode,the
keypadcontrolsareasfollows:

Unassigned Unassigned Unassigned Unassigned
Unassigned Up Unassigned Drag/Release
Left ReadCurrent Right
First Down Last Select
StopAudio TextMode

These controls are explained further in the section titled Navigation.

In text mode, the keypad controls are as follows:

Unassigned
Read Sentence Up Line
Left Character Read Line
Read Character
Read Word

Stop Audio

Cursor Modes Filter Modes

Read Paragraph
Right Character
Down Line
Select
Text Mode

Disable
Enable

The text mode key is used to switch UltraSonix in and out of text mode. The text reading
functions are explained further in the section titled Accessing Text.

Additional keyboard input is used, such as using modifier keys (shift, meta, alt and control) with
the numeric keypad. These keyboard combinations will be explained in the appropriate section.

4.2 UltraSonix Console

When you start UltraSonix, a UltraSonix console is started for you. UltraSonix immediately
places your focus in this application. The console allows you to control various parameters and
settings in the UltraSonix software. Via the console, you can change speech rate, voice, user
expertise level, and several other settings. There is also a text area where you can type commands
directly to the UltraSoni:(process (this is primarily useful for debugging and testing of the
software).

4.3 Running Applications with UltraSonix

To operate with the UltraSonix software, applications must be run in a special way. UltraSonix
works by substituting its own special versions of the X Window System libraries in applications as
they run. Applications that aren't run using these special libraries will not be "visible" to the
UltraSonix software.

To run an application under UltraSonix, use the command "sxrun." Sxrun is a shell script that sets
several environment variables and then executes the rest of the arguments on its command line as a
command. For example, to run the "xmailtool" application, you would type the following
command:

sxrun/opt/GTsonicx/bin/xmailtool

Type this now to start the xmailtool application; we will use this application as a demonstration in
this tutorial.

a

P_

,i.

4.4Starting,StoppingandSwitchingBetweenApplications

As youstart,stopandswitchbetweenapplications,UltraSonixmaintainsa list of all your
applicationsincludingtheUltraSonixconsoleasyourfirst application.Your focusis alwayson
oneof theseapplications.WhenyoustartanapplicationthatUltraSonixknowshowto provide
accessto, youwill hearawindingsound(like someonewindingamusicbox), thenyouwill heara
musicsoundasyouaremovedto thenewapplication.Whenyouexitanapplication,youwill hear
aflushingsound,andthenamusicsoundasyouaremovedto thepreviousapplicationin the
applicationlist.

Youcanpressalt-rightandalt-left to switchbetweenapplicationsby pressingthealt key,holding
thatkeydown,whilepressingtheleft or right arrowkeyson thenumerickeypad.Whenyou
switchapplications,youwill hearapapershufflingsound,andthenthemusicsound.Eachtime
youhearthemusicsound,thespeechsynthesizerwill announcethetitle of theapplicationthatis
thenewfocus.

Summaryof controlspresentedin thissection:

Alt-right:
Alt-left:

Moveto thenextapplication
Moveto thepreviousapplication

Summaryof soundspresentedin thissection:

Winding:
Flushing:
Papershuffle:
Music:

Applicationstarting
Applicationending
Switchingbetweenapplications
Focusmovedto anapplication

4.5Navigation

At thispoint,youshouldhavestartedUltraSonixandthenstartedtheapplicationxmailtoolfrom
theUltraSonixconsole.After xmailtool has finished hooking up to UltraSonix, you will hear the
music sound as your focus is moved to this application. This section will lead you through the
basic steps of navigating'an application interface by describing how to navigate the application
xmailtool.

The basic premise behind UltraSonix's navigation controls is that UltraSonix maps the GUI
interface into a tree structure. To explore the interface, you can walk up and down the interface's
tree structure using a simple set of commands. The first command to learn is:

5_ Info about current location

By pressing the 5 key on the numeric keypad, you can hear information about your current location
in the application interface. By pressing 5 now, you should hear the music sound and "xmailtool."

(Quotes indicate synthesized speech.) The music sound indicates that you are at the top of an
application tree structure.

The next commands to learn are:

8/Up arrow:
2/Down arrow:

Go up one level to the parent of the current object
Go down one level to the first child of the current object

,a

Press 2 to go down one level. You should hear the sound of tapping on glass for a window (tink
tink). If you press 5, you hear tink tink "Window"

Press 2 to go down one level. You should hear a container sound (opening door). Press 5 to hear
opening door and "Container."

The next commands to learn are:

6/Right arrow: Go to the next sibling in a group of objects
4/Left arrow: Go to the previous sibling in a group of objects

Press 2 to go into the container. You should hear a pull-chain sound for a toggle button and "Read
Message" as the label for the first toggle button. Practice using 4 and 6 to move between the toggle
buttons. You should hear a "rebound" sound if you try to go past the four buttons in either
direction.

Press 8 to go back up to the container and then press 6 to go to the next object which is a message
bar. You should hear a printer sound and the the text of the message is read.

Press 6 to go to the next object, a text area. It should sound like a typewriter.

Press 6 to go to the next object. It's a container. You can go into it to get to the push buttons. The
third push button "Undelete" should sound different since it is greyed out. (Greyed out means that
this button is currently unavailable in the interface.) Since this a large group of push buttons, you
can practice using two short-cuts to quickly move to the beginning or end of a list of objects. The
controls are:

3/PgDn:
1/End:

Move to the last object in a group
Move to the first object in a group

We'll take a break in the tutorial for a few minutes as we describe all the sounds that you have been

hearing. We'll pick the tutorial back up at this spot in the application interface when we finish the
discussion on Sounds in UltraSonix.

Summary of controls presented in this section:
,¢

8/Up arrow: Go up one level to the parent of the current
object

2/Down arrow: Go down one level to the first child of the

current object
6/Right arrow: Go to the next sibling in a group of objects
4/Left arrow: Go to the previous sibling in a group of

objects

3/PgDn:
l/End:

Move to the last object in a group
Move to the first object in a group

Summary of sounds presented in this section:

Tapping on glass:
Opening door:
Pull-chain:

Rebounding ball:

Window
Container

Toggle button
Out of bounds

Messagebar: Printer
Textarea: Typewriter
Keyboardtap: Pushbutton

4.6Soundsin UltraSonix

UltraSonixusescombinationsof synthesizedspeechandnonspeechaudiosoundeffectsto convey
thestateof agraphicalapplication.Thesoundseffectsarecalledauditoryicons,like their
graphicalcounterpart.Thepurposeof auditoryiconsis to conveythetypesof objectsusedin the
graphicalinterface.You'vealreadyheardanumberof soundsby now suchastappingonglassfor
awindowandatypewriterfor atextarea.Otherexamplesinclude:

Shortpop: Radiobutton
Shortclick: Checkbox
Flippingshutter: Menu
Singleflip: Menubutton

A listingof all thesoundsis providedin thereferencesection.

In UltraSonix,thesoundsarealsomodifiedto conveyattributesof theinterfaceobjects.For
example,thepushbutton"undelete"in the lastexamplesoundedmuffledto conveythatit was
greyedout in theapplicationinterface.Conversely,asoundisexaggeratedto indicateif anobject
is alreadyselectedorhighlighted.

Auditoryiconsarealsomodifiedto conveythesizeof aobject. In thesecases,thepitchof asound
is modified.For example,thepitchof thetypewritersoundindicatestherelativesizeof atextarea.
A smalltextarea(say3 linesof text)wouldsoundhigherin pitchthanalargetextarea(say20
linesof text). This techniqueis alsousedwith containers.A largecontainer(contains20objects)
wouldsounddeeperinpitch thanasmallcontainer(containsonly threeitems.)

To hearexamplesof this technique,navigatebackup to thecontainerof pushbuttonsby pressing
the8/Upkey. Youshouldhearadeepopeningsound.By navigatingto thenextobject(6/right
key)youwill moveto amuchsmallercontainer.Likewisethenextobjectisalsoasmallcontainer.
Continuingthroughtheobjects(keephittingthe6/rightkey),thenextobjectis asmalltextarea.
Thelastobjectin thisgroupis a largetextarea.Practicemovingbackandforth betweenthese
objectsendingatthe largetextareathatyoustartedat. (This is thecontainerwith thepushbuttons
"next", "delete","undelete"andsoon).

Summaryof soundspresentedin thissection:

Shortpop: Radiobutton
Shortclick: Checkbox
Flippingshutter: Menu
Singleflip: Menubutton

Muffled:
Excited:
Deeppitch:
Highpitch:

Greyedoutobject
Selectedorhighlightedobject
Largeobject(i.e.containeror text)
Smallobject(i.e.containeror text)

'4
t_

I11

iI

,&

4.7 Advanced Navigation and Control

Youshouldnow belocatedatthe largecontainerthatcontainsanumberof pushbuttons. In this
section,youaregoingto learnaboutpop-upwindows,anewwayto navigatebetween
applicationsandacontrolfor heatingthepreviewof acontainer.Alsoyouaregoingto learnhow
to selector activateinterfacecontrols.

4.7.1 Pop-updialoguesandSelectingObjects

Fromthelargecontainer,enterthecontainerby pressingthe2/Downkey. Navigatethroughthe
list of pushbuttonsuntil youhearthepushbuttontitled "Compose."(It'sthe 10thbutton in the
group). Sofar youhavebeennavigatingthroughtheapplicationinterfacewithout actually
operatinganyof the interfacecontrols. It'simportantto beableto learnthecontentsof aninterface
withoutworryingaboutaccidentlypushingthewrongbuttonandsoon. For thisreason,
UltraSonixprovidesseparatecontrolsfor navigationandfor selection.

Youmayhaveheardsighteduserstalk aboutdouble-clickingonobjectswith theirmousein order
to makesomethinghappenin aninterface.In UltraSonixdouble-clickingis oneform of selection.
To selectanobject,youneedto presstheEnterkey (onthenumerickeypad)whenyouarelocated
atthatobject.For example,youarecurrentlylocatedatthe"Compose"pushbutton. To selectthe
pushbutton,simplypresstheEnterkey andyouwill hearaseriesof sounds.

Thefirst soundyouhearis arippingsound.This is thesoundfor selectionandindicatesthatyou
haveselectedthepushbutton. In xmailtool,selectingthe"Compose"buttoncausesapop-up
dialogueto appear.A pop-updialogueis anotherwindowthattheapplicationusestemporarily. In
thisapplication,thedialogueis usedto write andsendanelectronicmail message.Rightnow,
we'rejust goingto practicecreatinganddismissingthepop-updialogue.

Thesecondsoundyouhearis awhistlesoundwith anrisingpitch. Thissoundindicatesthata
pop-uphascomeintoview. Thelastsoundis apogo-sticksoundwhich indicatesthatyouhave
beenmovedto thepop-updialogue.If youpressthe5 key,you will hearthepogosoundand
"Pop-updialogue."

Thestructureof thepop-upisprettysimple. Navigatedown(2/Downarrow)to thewindowof the
dialogue.Navigatedownagainandyouwill hearthecontainersound.Navigateto theright and
youreachatextarea.This iswhereyouwouldwrite theemailmessage.We'll explainhow to do
this in thenextsection.Navigatebackto thecontainer.In thecontaineraretwo pushbuttons,
replyandcancel.Moveoverto thecancelbuttonandselectit CEnter key). You will hear the
ripping sound (selection) and a whistle sound with a descending pitch as the pop-up disappears.
The last sound is the push button sound for the "Compose" button as you are moved to your last
previous location before the pop-up. Practice selecting Compose and dismissing the pop-up with
the Cancel button.

Summary of controls presented in this section:

Enter: Selection

Summary of sounds presented in this section:

Ripping paper:
Whistle up/down:

Selecting an object
Pop-up appearing / disappearing

4.7.2 More on Moving Between Application

If youwantto movebackandforthbetweenapplicationswhilemaintainingyourlastknown
positionyoucanusethecontrolsshift-rightandshift-left. For example,youshouldnow be
runningtwo applications,theUltraSonixconsoleandxmailtool. Move to theUltraSonixconsole
by pressingandholdingtheshift keyandthenpressingthe4/left key,releasingbothtogether.
Thenmovebackto xmailtoolby pressingtheshiftand6/rightkeycombination.You shouldbe
nowbe locatedatyourpreviousposition,mostlikely thecomposekey.

Summaryof controlspresentedin thissection:

Shift-right:
Shift-left:

Moveto thenextapplication,retaincontext
Move to thepreviousapplication,retain
context

4.7.3HearingaPreviewof aContainer

Sometimesyoumaywantto getanoverviewof aportionof aninterfacewithoutactually
navigatingthroughoutthe interfacecontents.By pressingthecombinationshift-5,youcanhearan
auditorypreviewof anytypeof container.Forexample,navigateto thelargecontainerwith all the
pushbuttons. Pressshift, holding it down,andthenpress5 on thenumerickeypad. You will
hearshortsnippetsof theauditoryiconsfor all theobjectsin thecontainer.In thiscase,you'll
hearthebeginningof thepushbuttonsoundanumberof times.

A window issimply aspecialcaseof acontainer.Press8/Upto navigateto themainwindowof
xmailtoolandthenpressshift-5. Youwill hearshortsnippetsof all theobjectsin thewindow. In
thiscase,youwill hearanumberof differentsoundssincethewindowcontainsanumberof
differentobjects.

Thepurposeof apreviewis to giveyouanoverallfeel for thecontentsof acontainer.You should
beableto roughlygaugethenumberanddiversityof objectsin acontainer.

Summaryof controlspresentedin thissection:

Shift-5: Hearpreviewof acontainer

/

4.7.4 Hearing the Object Hierarchy

In some cases, you may want to determine your current location by hearing the path from the top
of the application tree to your current location. Like a preview, you will hear short auditory
snippets for the objects in the path, from the top of the tree structure to your current location. To
hear the path, simply press the alt key, holding the key down, and then press the 5 key on the
numeric keypad. You may want to navigate to the Compose push button and practice requesting
the path information.

Summary of controls presented in this section:

Alt-5: Hear the path from the top to the current location

!

4.8 Accessing Text

In this section, we will discuss the different controls used to review and enter textual information.

To practice this portion, you may want to navigate back to the UltraSonix console (Shift-left) and

thennavigateto thetextarea.Youwill needtoentertextmodeto beableto readandentertext.
Youentertextmodeby pressingthe./Delkeyon thenumerickeypad.Youwill heararolling
sound,like adraweropening.This soundindicatesenteringandexitingtextmode.You will not
beableto entertextmodewhileonanobjectthatdoesnot supportreadingor writing text.

After youhaveenteredtextmode,typethefollowing command:"moretext-sample."This
commandwill causethecontentsof thefile "text-sample"to bedisplayedontheconsole.Youcan
usethissample,to learnhow to reviewandentertext.

A commonconceptin screenreadersis thedistinctionbetweenthereviewcursorandtheedit
cursor.Thereviewcursorindicatesthecurrentlocationfor readingtextwhiletheedit cursor
indicatesthecurrentlocationfor editingtext. UltraSonixprovidescontrolsfor movingboth
cursorsaswell ascontrolsfor makingthecursorspoint atthesamelocation.

Thebasiccommandsare:

2/DownArrow
4/LeftArrow
6/RightArrow
8/UpArrow

Movedownandreadoneline
Move left andreadonecharacter
Move rightandreadonecharacter
Moveupandreadoneline

1/End: Readthischaracter
3/PgDn: Readthisword
5: Readthis line
7/Home: Readthissentence
9/PgUp: Readthisparagraph

Thedatareturnedbythesecommandsispassedthroughwhateverfilters areactivefor thecurrent
screenreader(seeControllingthePresentationof TextUsingFilters,below).

Thecommandsto readcharacter/word/line/sentence/paragraphmaybemodifiedby theuseof the
shift, control,andmetakeys. The"shift" key instructsthescreenreaderto readthenext item,
whilethe"control"key instructsthescreenreaderto readthepreviousone.For example,pressing
the"control"andkeypad7 keyssimultaneouslyinstructsthescreenreadertoreadthesentence
previousto thecurrentcursorposition. Pressingthe"shift", "recta",andkeypad3keys
simultaneouslyinstructsthescreenreaderto readthenextwordfrom thecurrentcursorposition,
andto updatethecurrentcursor("move")to apositionwithin thatword. Theshift andcontrol
keysmaynotbeusedsimultaneously.

Thesecommandsmovefrom the"active"cursor.Thecommandsto controlthevariouscursor
modesareasfollows:

shift + /

control + /

Cursor status: announce the current cursor

position, the current cursor (edit or review)
and the following mode (see below)
Toggle cursor mode: switch from edit to review
mode or vice versa (see below)
Toggle follow mode (see below)

The "cursor mode" refers to the currently active cursor for the current screenreader. By default,
each cursor begins in "edit" mode, which means that the cursor movement keys will control the
edit cursor. Toggling the cursor mode will cause the screenreader to be placed in "review" mode,
which will cause the cursor keys to control the review cursor instead. These cursors may be
moved and queried independently of one another.

!

By default, in "edit" mode, the screenreader *reads* from the current position, outputting the

requested information to the display device(s), but leaving the cursor in the same position. In
, • ,1 , . .

review mode, by contrast, the screenreader moves*, or outputs the requested reformation to the
display device(s), and then updates the cursor to point to a location within the text that was just
read. The "meta" key toggles the default read/move behavior for the current mode. That is, in

"edit" mode the cursor is moved, and in "review" mode, the cursor reads without changing
position.

"Follow mode" refers to the manner in which cursors behave when the cursor mode is toggled. In
"following" mode, the review cursor will begin at the same location as the edit cursor when review

mode is invoked. In "not following" mode, the review cursor maintains a persistent view of its
own position; when review mode is invoked, the cursor will begin at the last location where it was
before edit mode was invoked (of course, if review mode has not been previously invoked, the
review cursor will begin start of the text area).

A useful control stops the playing of any speech and auditory icons that are currently being played.
This control is the 0/Ins key at the bottom left of the numeric keypad.

O/Ins: Stop all currently playing speech and audio

Some of the configuration for reading text is accomplished in the UltraSonix configuration files.
See the next section for details.

4.8.1 Controlling the Presentation of Text Using Filters

Filters may be used to control the presentation of information to the user. The following sections
describe the specification, configuration, and usage of the filtering system for the screenreader in
UltraSonix.

4.8.1.1 What is a Filter?

A filter is an entity within the UltraSonix system which is defined with a series of commands
which allow the user to alter the default presentation of text on the screen. A filter consists of one
or more commands which are entered in a filter configuration file, where each command indicates a
particular pattern in the text area which should be replaced by another. In this way, substitutions
may be made from the standard way in which text is presented to the user to a user-defined

presentation. A list of filters is loaded into each screenreader at startup. These filters are applied in
the order that they are loaded.

A sample filter is described below:

This is a comment and is ignored
filter test {

"Bob Robert"

"[Tt]he that"

"[0-9]+ (Sold)"
HIGHLIGHT "highlighting"
FONT "font"

)

So is this -- everything until the
end of the line is tossed away.
Enclose digits in parentheses

II _ I III

We will now explain, line by line, the format of the filters in the definition file. First, each filter
begins with the keyword "filter", followed by a unique, case-sensitive name, and a pair of
enclosing braces ("{ }"). The word filter is not case-sensitive, and may therefore be specified as
'!filter", "Filter", "FiLtEr", etc. A duplicate filter entry will discard earlier filter entries.

Following the initial opening brace are filter commands, specified one per line. Each filter
command consists of a trigger and a replacement expression. The trigger is the condition which
activates the filter, while the replacement expression is what the filter does when it is activated.
We'll see exactly what this means as we examine each command.

The first command consists of the activation "Bob" and the replacement "Robert". This means that
any instance of the characters "Bob" (the activation is case sensitive) will be replaced by the word
Robert. For example, in the sentence: "Bob Bobbit went bowling", the filter would present the
sentence "Robert Robertbit went bowling". The quotes around both the activation and replacement
strings are only used by the filter to recognize phrases, and are not used when the filter searches
for an activating pattern, nor when the pattern is replaced. To actually use quotation marks in
either the activation string, the sequence V' must be used instead of the "character by itself.
Whitespace and any characters following the # character are discarded by the filter parser, so you
may feel free to indent, format, and comment your filter files as you see fit.

The second command introduces *regular expression* notation. More help on regular expressions
may be found in the man pages for the "grep" utility, or in the lexx/yacc programming guide. Any
activation enclosed in double-quotes is actually a *regular expression* and may use the standard
regular expression notation to declare *sets* of patterns, rather than direct match patterns, such as
"Bob" in the first command. This command actually searches for patterns which begin with either
"The" or "the", and replaces it with "that".

The third command introduces the *expression substitution* variable. At times, it will be
convenient to include the text of the pattern which triggered the activation in the replacement
expression itself. This is done using the sequence of symbols "Sold". When this is used, the
pattern that matched the activation will be substituted into the position marked by Sold in the
replacement expression. For this command, any non-zero sequence of digits is found, and is
surrounded by parentheses. For example, the sentence "Jan lives at 347 Huntsville Lane, Tacoma
WA 50487" becomes "Jan lives at (347) Huntsville Lane, Tacoma WA (50487)". Note that the

first time the activation pattern is triggered, the value of Sold is 347, while the second time it is
triggered, the value is 50487.

The last two expressions merely demonstrate activation patterns we have not seen before. Instead
of regular expressions, which examine the content of the text presented to the user, the activation
patterns HIGHLIGHT and FONT examine the actual onscreen presentation of the text itself. As
the filter scans the text from that it is reading, it searches for changes in the text attributes stores in
the representation model and inserts the appropriate replacement expression wherever the attribute
change takes place.

The filter definition is terminated by a closing brace.

4.8.1.2 How are Filters Loaded?

Filters are defined in simple text files which have one or more declarations for filters. A
declaration consists of the keyword "filter" and a unique name used to identify that filter, followed
by the commands that the filter is to invoke. The names of the filters are case-sensitive, so the
names "BOB" and "Bob", for example, refer to different filters. When UltraSonix is started up,
each of the filter files defined in the variable "srFilterDef'mitionFiles" is loaded, one at a time, in the

IC

I

order they are specified. Each file then loads the individual filter definitions within the file in the
order that they occur. If no errors occur in the parsing of the filter, its definition is stored in a
dictionary of filter definitions, and may be referenced using the name specified in its definition.

If the configuration variable "srFilterDefinitionFiles" does not exist, only the filters in the file
"default.fit" will be loaded.

Once filters have been loaded into the dictionary for the UltraSonix system, they may be registered
for use with the screenreader. The filters to be used are specified in the variable "srFilters" in the
order in which they are to be applied.

If the configuration variable "srFilters" does not exist, then the filters "SpeakCaps" and
"SpeakUNIX" will be applied, in that order.

4.8.1.3 Using Filters in UltraSonix

The following section describes how to examine which filters are operative for a particular
screenreader, as well as how to interactively enable and disable them.

Display current active status of filters.
Toggle filter enable mode. This feature may only
be activated when UltraSonix is in text mode.

The filter display command causes each filter to be displayed to the output device. The position of
the filter is announced, along with the name of the filter, and its current status (off or on).

Entering filter toggle mode allows the user to interactively enable or disable the current filters
loaded using the keypad + and - keys. In filter toggle mode, UltraSonix cycles through the filters
registered with the screenreader (specified in the "srFilters" configuration variable) and waits for
the user to enable or disable each filter, using the keypad "+" and "-" keys. Pressing the "*" key
announces the current filter by name, position, and current status (ON or OFF). Pressing the "+"
key will enable the current filter, while pressing the "-" key will disable it. Filter toggle mode
automatically exits when all filters have been configured in this manner, or the user may exit the
mode manually by pressing Shift-*.

5.0 BRAILLE OUTPUT

5.1 Configuring UltraSonix to Use a Braille Terminal

UltraSonix supports the Alva ATB 3/20 and the Alva ATB 3/80 braille terminals. To use either
Braille terminal with UltraSonix, connect the Braille terminals to a machine as specified by the
user's manual. Then either start the server daemon, alvad from the command line, or specify the
server in the config file (see the documentation on starting servers from UltraSonix).

The variable "brailleLoadable" must also be set to "Alva" in the config file (see Section 6.0,
"Configuration," for more details):

brailleLoadable = "Alva"

and the model must also be specified with the "alvaModel" variable:

alvaModel = "Alva 3/20"

I

I I I I I • I 111 I I I

or

alvaModel = "Alva 3/80"

(3/20 is the portable 20 cell model with three status cells while the 3/80 is the 80 cell model with
five status cells.)

These will tell UltraSonix to look for the loadable object named Alva.so in one of the directories
specified by the loadableSearchPath variable in the configuration file.

5.2 Using the Alva Braille Terminal

Currently when the user is in text mode, the current line, word, or character, depending on the
navigational mode, is sent to the Braille terminal as well as the speech device. The user can also
navigate in the text area using the keys on the front panels of the Braille terminal. These keys work
as the navigation keys when the user is in text mode.

In addition, there is a jumpscroll mode which will cause the Braille terminal to scroll to the next 20
or 80 characters on the line, depending on the model. To toggle in and out of this mode, use the
command:

braille toggle jumpScroll

at the UltraSonix command prompt, or you can use the graphical console application to configure
jump scroll mode.

There is also a command to retrieve the capabilities of the current Alva model:

braille cap <capability>

The capabilities the user can query are:

displayCells'
statusCells

highlightSupported
hasCursorKeys
hasProgKey
hasHomeKey
otherKeys

6.0 CONFIGURATION

In order to use UltraSonix, the software must be configured properly. The UltraSonix software is
higly configurable: it is possible to completely change the operation of the software by editing a set
of configuration files. Most of the time, only very simple configuration is required: telling the
system what hardware devices are attached, for example. At other times, "power users" may wish
to fundamentally alter the behavior of the system.

Section 6.1, "Basic Configuration," describes the day-to-day configuration of the system, the
directory layout and how it affects the operation of the software, and the tasks that must be
performed to allow the software to run after installation. Section 6.2, "Advanced Configuration,"

describesmorepowerfulconfigurationtechniquesthatcanbeusedtochangethenon-visual
interfacesproducedby UltraSonix.

6.1BasicConfiguration

Thissectiondescribesthebasicsof howUltraSonixfinds its requiredsupportfiles,how
applicationsusethemodifiedX librariesthatarerequiredto rununderUltraSonix,andrequired
modificationsto theconfigurationfile.

6.1.1Essentials

UltraSonixshouldbe installedonyoursystem,preferrablyin thedirectory/opt/GTsonicx.The
GTsonicxdirectorycontainstheexecutablesfor UltraSonixandotherprograms,librariesusedby
theseprograms,andvariousconfigurationfiles.

Severalof thesubdirectoriesunderGTsonicxareparticularlyimportantfor configurationof the
system:

6.1.1.1lib

Thelib directorycontainslibrarieswhichareusedby applicationsrunningunderUltraSonix,and
by UltraSonixitself. Forapplicationsto communicatewith UltraSonix,theymustusespecial,
modifiedversionsof theX WindowSystemlibrariesthatknowhowto communicatewith the
accesssoftware.Typically thesubstitutionof theselibrariesisdoneatruntimeby changingthe
LD LIBRARY_PATH environmentvariableto "point" to themodifiedversionsof theX libraries.

Theeasiestwayto runapplicationsunderUltraSonixis to usethe"sxrun"script, sxrunexecutes
applicationswith theLD_LIBRARY_PATHvariablesetto usethemodifiedlibraries.

Only two X librarieshavebeenmodifiedto work withUltraSonix: libX11 andlibXt. If anyother
X librariesareusedby applications(libXm, libXmu, etc.),theunmodifiedversionsof thesecanbe
used.ThemodifiedlibX11 andlibXt are*required*for applicationsto workhowever.

If youmustsettheLD_LIBRARY_PATH "by hand,"or cannotusesxrunfor whateverreason,
youneedto know howthelibrariesunderthelib directoryareused.

Thesubdirectoriesunderlib areR5,R6, RAP,andR6.orig.

6.1.1.1.1 R6.orig

TheR6.origdirectorycontainsunmodifiedversionsof theX 11R6 libraries.Theselibrariesshould
only beusedby theUltraSonixexecutableitself. If applicationsusetheseunmodifiedlibraries,
theywill beunabletocommunicatewith UltraSonixsincetherequiredmodificationsarenot
presentin theselibraries.

6.1.1.1.2R5

The R5 directory contains versions of the X11 R5 libraries which have been modified to

communicate with UltraSonix. libXl 1 and libXt have these changes; the other libraries in this
directory are links to unmodified R5 libraries in/usr/openwin/lib.

Most applications should be run with their LD_LIBRARY_PATH set to this R5 directory. The R5
libraries are what we use in our test environment.

6.1.1.1.3 R6

TheR6directorycontainsmodifiedlibXl 1andlibXt versionsfrom theXl 1R6distribution.The
otherlibrariesin thisdirectoryarelinks to the unmodified R6 libraries in R6.orig.

There are currently very few R6 applications in existence; in fact current versions of Motif only
support R5. We provide these R6 libraries as a "work in progress."

6.1.1.2 etc

The/etc directory contains various configuration files and scripts used by the UltraSonix software.
It is essential that the UltraSonix software be able to find the contents of this directory when it
starts. See the section below for a description of what these files do and how UltraSonix locates
them at start-up time.

6.1.2 Finding the Configuration File

UltraSonix must be able to load a configuration file at startup time in order to operate. There are
several places where the system looks for this file, and you can override the default locations in
several ways.

By default, UltraSonix looks in order in the following locations for a configuration file:

$HOME/.mercator.config
-/.mercator.con fig

/opt/GTsonicx/etc/mercator.config

If a configuration file is not found in any of these locations, and an explicit path to it has not been
provided, then the system will not start and an error message will be printed.

There are two ways to provide an explicit path to a configuration file. The first is to use the -f
option on the command line when starting the system. The second is to set the
MERCATOR_CONFIG environment variable to contain the path to the file. The -f option takes
precedence over the envi_'onment variable.

6.1.3 Editing the Configuration File

The configuration file contains several options that describe how the system will behave. In
particular, the file contains path information to various template files, filters, and sound files which
the system must be able to locate to function properly. If you put an inappropriate option or wrong
path into the configuration file, it is likely that UltraSonix will not function.

After installing the software, you must at a minimum tell the system what hardware devices are
attached.

There are several "sections" in the configuration file that you can edit. The basic configuration
options are described here; others are described in Section 6.2, "Advanced Configuration."

6.1.3.1Paths

Theconfigfile specifiesseveralpathsto fileswhichareneededby thesystem.In general,these
paths*must* besetcorrectlyor thesystemwill fail.

Thefirst pathspecifiesthe locationof thevariousTCL scriptsusedbyUltraSonixto build its
interfaces:

mercatorTclPath = 'i/opt/GTsonicrdlib/scripts"

Thenextimportantpathspecifiesthelocationof the"template"fileswhichgovernper-widgetand
per-appliationbehavior.Thisattributespecifiesa list of subdirectoriesunderwhichtemplatefiles
will be loaded.All filesendingwith the .tmplsuffix underthesedirectorieswill beloaded:

templateDirectories = ("/opt/GTsonicrdlib/templates/Athena",
"/opt/GTsonicx/lib/templates/Motif",
"/opt/GTsonicx/lib/templates/Apps")

Thefinal pathis a list of directoriesin whichto searchfor loadableI/O drivers:

loadableSearchPath = ("/opt/GTsonicx/lib/loadables")

6.1.3.3Configurationof LoadableModules

Theconfigurationfile specifieswhatloadableI/O driversshouldbeusedby UltraSonix. Several
attributesareusedto specifywhichdriversshouldbeloaded:speechLoadable,audioLoadable,
andbrailleLoadabletell UltraSonixwhichSpeech,Audio, andBraille moduleswill beused.A
fourthattribute,miscLoadables,containsalist of othermodulesto be loaded.Generallytheseare
for input-onlydevicessuchaskeypads:

speechLoadable
audioLoadable
brailleLoadable
miscLoadables

= "Dectalk"
= "NetAudio"
= "Alva"

= ("Genovations")

Note that the configuration above (Dectalk, NetAudio, etc.) represents the environment under
which we run UltraSonix ourselves, so it is probably the most robust.

The loadable modules themselves may need to know various configuration information which they
will try to retrieve from the config file. Check the docs for the particular I/O modules you are
using to see what (if any) extra config information they may use. Below is the set of attributes
used by the modules above, since they represent the default environment:

###

#0# Dectalk-specific configuration
###

dectalkServer = ("/opt/GTsonicx/bin/dectalkd", "-f", "-t", "/dev/ttya")
dectalkTimeout = 4

###

NetAudio-specific configuration
###

netaudioServer = ("/opt/GTsonicx/bin/netaudiod")

###
Alva-specific configuration
###

alvaServer = C/opt/GTsonicx/bin/alvad", "-d", "/dev/ttyb")
alvaModel = "Alva 3/20"

In general, particular I/O modules will look for information in the config file to start any servers
that they may require, and set device-specific characteristics.

6.1.3.4 ScreenReader Configuration

The config file contains attributes which describe the default settings for the screenreader module.
These are described in more detail in the screenreader documentation:

srOperationMode
srSpeakingMode
srNumberFormats

srCapsMode
srTextControl
srMathControl
srMiscControl

srUnixSpeak
srlncomingMode
srSpeechRate
srVoice
srReturnClick

srSpaceClick
srKeyClick
srWrapSound

= REVIEW
= WORD
= WORD

= NODIFF
= FALSE
= FALSE
= FALSE

= FALSE
= WORD
= 180

= "/opt/GTsonicx/sounds/TypeReturn. au"
= "/opt/GTsonicx/sounds/TypeSpace.au"
= "/opt/GTsonicx/sounds/TypeKey.au"

= "/opt/GTsonicx/sounds/beep_,jazz_piano.au"

The most important screenreader configuration options are used to control filter behavior. The
srFilterDefinitionFiles is a list of files which contain filter definitions. The paths in this list must be
accurate for the filters to be found. The srFilters attribute is a list of the filters to be used in each
screenreader.

srFilterDefinitionFiles
srFilters

= ("default.fit")
= ("SpeakCaps", "SpeakUNIX")

6. 1.3.5 Output Configuration

You can control the amount of output generated by UltraSonix, as well as where that output should
be sent:

errorLevel = 4

errorOutput = STDERR

ErrorLevel is a "filter" which controls how much output will pass the system. The value of 8
allows all output to be written. 4 is useful as it only allows severe warnings and errors to be

printed.

6.1.3.6ConsoleConfiguration

Theconfig file specifieswhat(if any)consoleapplicationwill berunwhenUltraSonixstarts.

console
consoleWait
consoleEnv

= C/opt/GTsonicx/gui-console")
=5

= ("LD_LIBRARY_PATH=/opt/GTsonicx/lib/R5")

The "console" attribute provides the path of the console application to be started automatically.
"ConsoleWait" specifies how long UltraSonix will wait for the console to start, before it defaults to

using standard input and output for I/O. The "consoleEnv" attribute is used to provide an
alternative environment for the console process. Here we specify the path to our modified X
libraries so that the console will be available under UltraSonix.

6.2 Advanced Configuration

UltraSonix provides extensive support for customization by administrators and "power users."

This section describes some of these facilities. Section 6.2.1 describes the notion of templates,
which are used to customize behavior of objects in UltraSonix. Section 6.2.2 details some
additional features in the configuration file that can be used for advanced customization. Section

6.2.3 describes how to extend the configuration file and template file parsers to accept new
attributes without the need to recompile the system. Section 6.2.4 describes the tcl files that
UltraSonix uses to build its non-visual interfaces.

6.2.1 Template Configuration

UltraSonix uses the notion of "templates" to control the presentation and use of particular widgets
and applications. By editing a template file, you can change how the system will respond when it
encounters a particular object in an application. Templates capture the widget-and application-
specific information required by UltraSonix.

:!

6.2.1.1 Widget Template Configuration
g

Each class of objects (otherwise known as widgets) can be configured using templates. Here is the
template for the Motif widget XmPushButton.

classTemplate XrnPushButton {
navigable = TRUE

sound = "Sounds/winding.au"
sensitive = [SensitiveProc]

mappedWhenManaged = [MapWhenMgdProc]
}

The token "classTemplate" is a reserved word in the template parser that indicates that this template
is specifying the attributes of an entire class of widgets. The string "XmPushButton" denotes the
widget class that this template will be applied to.

Within the braces are a set of attributes that are being assigned to this template. Each attribute
understood by UltraSonix has a fixed type that it can take; allowable types are boolean, string,
integer, and list of strings. Further, the value of each attribute can specified either "simply" (by
providing an integer, string, and so forth), or by a "procedure" (see below).

............ " Jill

Four attributes are shown here. The "navigable" attribute is of type boolean, and indicates whether
objects of this class will be considered "viewable" to UltraSonix. The "sound" attribute indicates

the sound to play when the user navigates to an object of this class, and is of type string. The next
two attributes, "sensitive" and "mappedWhenManaged" are of type boolean, but their values are
specified using *procedures*.

The square bracket notation in a template file indicates that the string inside the bracket is the name
of a tcl procedure that should be run whenever the value is needed. The use of procedures allows
dynamic setting of template attributes. (TCL stands for Tool Command Language, which is an
interpreted, interactive language). The tcl code for SensitiveProc is shown below:

proc SensitiveProc {type node} {
if { [resource $node get sensitive] == "TRUE" } {

return "TRUE"

} else {
return "FALSE"

}
}

Writing these procedures will require an understanding of tcl and, at least, a partial understanding
of UltraSonix internals. Many users will not need to configure UltraSonix at this level.

By using class templates, you can affect change in the way UltraSonix handles entire classes of
widgets: the XrnPushButton example shown above will change the behavior for all Motif Push
Buttons in all applications running under UltraSonix.

Many times it may be useful to selectively change the behavior of one particular widget in one
particular application, however. To this end, UltraSonix supports the notion of "object templates."
Object templates work exactly the same as class templates, only they allow you to uniquely specify
one individual widget to which the specified attributes will apply.

Here is an example of an object template that overrides the default push button behavior for one
particular push button, this one in xmailtool:

objectTemplate XMailTobl.outer_box.quit {
sound = "Sounds/flush.au"

}

Note here the use of the key word "objectTemplate" (rather than "classTemplate") to indicate that
we're specifying one particular object, rather than an entire class of objects. Also, the specification
of the object we're interested in is the "long name" of the widget. This long name is similar to
Xrm-style naming in the X Window System, except that wildcards are not supported, and the
specification tokens must be widget names, not classes.

Both object and class templates support exactly the same attributes; they just provide different
mechanisms for setting those attributes. Any values not explicitly provided in an object template
will "fall back" to the class template for the widget class.

6.2.1.2ApplicationTemplateConfiguration

UltraSonixalsoprovidesthenotionof "applicationtemplates"to controlper-applicationsettings.
Currently,applicationtemplatesarenotwidelyused.Hereisanexampleof asimpleapplication
template,however:

appTemplateXMailTool {
readySound = "/opt/GTsonicx/lib/Sounds/electric.au"
shutdownSound= "/opt/GTsonicx/lib/Sounds/flush.au"

}

This example shows two attributes that control the start up and shut down sounds that will be

played for xmailtool. Note that application templates support a *different* set of attributes than
class/object templates. Application template attributes specify behavior for an entire application,
not just one widget or class of widgets.

6.2.2 Advanced Configuration File Settings

As we have seen, templates provide a tool for customizing the behavior of widgets, classes of
widgets, and applications. To simplify the writing of templates, UltraSonix allows you to omit
certain attributes when you write a new template file. For example, you may wish to create a class
template for a new widget class, "XmFooBar," but have most of the attributes be the same as other
class templates.

Thus, to simplify the creation of templates, and to standardize behavior, UltraSonix allows you to
specify "fallback defaults" for template attributes in the configuration file. These fallbacks are the
values that your template attributes will take if values for them are not explicitly provided.

As a safety mechanism, UltraSonix *requires* you to specify fallbacks for all template attributes in
your configuration file. This prevents the case where you omit an attribute from a template and
also neglect to provide a fallback for it (which would cause a runtime error).

UltraSonix will inform you if you omit a required fallback value from the configuration file.

Be careful about changing these fallbacks; changing them carelessly may cause unexpected
behavior:

defaultClassNavigable = TRUE
defaultClassShell = TRUE
defaultClassAllowTextMode = FALSE

defaultClassSound = "/opt/GTsonic x/lib/Soundsfoong.au"
defaultClassSpeakOnEnter =
defaultClassSpeakOnlnfo =

Note that the names for the fallbacks are derived from the template attribute names.

6.2.3 Extending the Configuration File/Template File Parser

If you need to extensively customize the template mechanism used by UltraSonix, you may find
that it would be helpful to add new attributes to templates. By default, the template file parser
understands only a handful of "hard-coded" attributes that are already understood by the internals
of UltraSonix.

Thereisamechanismfor extendingtheparsersothatit canunderstandnewattributeseasily,
however.Youcanextendtheparserby editingthefile "attributes"file. UltraSonixsearchesfor an
attributesfile in muchthesameway it searchesfor aconfigurationfile.

By default,UltraSonixlooksin orderin thefollowing locationsfor anattributefile:

$HOMELmercator.attrib
~/.mercator.attrib
/opt/GTsonicx/etc/mercator.attrib

If an attribute file is not found in any of these locations, and an explicit path to it has not been
provided, then the system will assume that you're not augmenting the template parser with an
attributes file.

There are two ways to provide an explicit path to an attributes file. The first is to use the -a option
on the command line when starting the system. The second is to set the MERCATOR_ATTRIB
environment variable to contain the path to the file. The -a option takes precedence over the
environment variable.

Here is an example of an attributes file that extends the template parser to add several attributes (the
attributes shown here are actually already used by UltraSonix, and should not be added to the
attributes file):

NAME TYPE FALLBACK NAME TEMPLATE TYPE
_####_li# ._.__._._._.#._,:_ #__:_ # _ ._._. _ ;_,_ ;;_.t # _ _,_#

navigable BOOLEAN defaultClassNavigable CLASS
volume INTEGER defaultClassVolume CLASS
sound STRING defaultClassSound CLASS

readySound STRING defaultAppReadySound APP

The attributes file is based on a four-column format. The first column gives the name of the
attribute that will now be viable in the template files. The second is the type of the attribute (either
BOOLEAN, INTEGER, STRING, and STRINGLIST. The third column provides the name that
will be used as a fallback in the configuration file (recall that all template attributes *must* have a
fallback value specified ila the configuration file). The fourth column indicates what type of
templates the new attribute may appear in. Legal values are CLASS (indicating that the attribute
can appear in either class or object templates), and APP (indicating that the attribute can appear in
application templates).

Remember that if you add a new attribute via the attributes file, then you must provide a fallback
value for it in the configuration file. UltraSonix will not start if these two files are "out of sync."

6.2.4 Using TCL Files

The UltraSonix software contains an embedded interpreter for the tcl language. All interfaces in
UltraSonix are generated through tcl scripts that are run in response to events: either changes in the
application state or input by users. By expressing interface behavior in tcl, separately from the
"core" system, which is implemented in C++, we can easily change the behavior of the system to
support radically new interfaces.

2

i
J

Tcl scripts specify the following:

- How to handle user input
"What happens when the user pressed the 5 key on the keypad?"

- What interface output to generate
"What output is presented when the user navigates to a grayed
out pushbutton?"

- When to simulate application input
"What happens when the user presses the enter key?"

- Querying the interface model
"Is the current object sensitive to user input?"

- How to handle dynamic application interface changes
"What happens when a dialog box appears?"

When UltraSonix first starts, it loads a tcl script that installs a set of behaviors (called "actions")
that are executed whenever an application's interface changes, and a set of "bindings" that specify
what will happen when the user generates some input.

As shipped, the first tcl file loaded into the system is called "mercator.tcl." Mercator.tcl establishes
a basic set of actions and bindings, and defines some utility procedures. It also loads the following
other tcl files:

text.tcl Provides text-mode support.
navigate.tcl Basic navigation algorithms.
audio.tcl Audio support for playing sounds.
templateprocs.tcl Procedures used in templates.

Any of these files may be changed to extend or alter the behavior of the system.

7.0 REFERENCE

7.1 Navigation Commands

8/Up arrow
2/Down arrow:

6/Right arrow:
4/Left arrow: '

3/PgDn:
1/End:

Go up one level to the parent of the current object
Go down one level to the first child of the current object
Go to the next sibling in a group of objects
Go to the previous sibling in a group of objects

Move to the last object in a group
Move to the first object in a group

lilt

.il

i,

Alt-right:
Alt-left:

Shift-right:
Shift-left:

Shift-5:
Alt-5:

Move to the next application
Move to the previous application
Move to the next application, retain context
Move to the previous application, retain context

Hear preview of a container
Hear the path from the top to the current location

Enter:

+:

./1)el:

Selection

Begin/End Drag/Release
Enter/Exit text mode

I I

7.2 Sounds

Tapping on glass:
Opening door:
Message bar:
Text area:

Keyboard tap:
Pull-chain:

Rebounding ball:
Text area:

Winding:
Flushing:
Paper shuffle:
Music:

Ripping paper:
Whistle up/down:

Window
Container
Printer

Typewriter
Push button

Toggle button
Out of bounds

Typewriter

Application starting
Application ending
Switching between applications
Focus moved to an application
Selecting an object
Pop-up appearing / disappearing

Muffled:
Excited:

Deep pitch:
High pitch:

Greyed out object
Selected or highlighted object
Large object (i.e. container or text)
Small object (i.e. container or text)

7.3 Text Review and Editing Commands

./Del:
O/Ins:

Enter/Exit text mode

Stop all currently playing speech and audio

1/End:

3/PgDn:
5:
7/Home:

9/PgUp:

Read this character
Read this word
Read this line
Read this sentence

Read this paragraph

Shift-{ 1,3,5,7,9}
Control-{ 1,3,5,7,9 }
Meta- { 1,3,5,7,9 }

Read next item

Read previous item
Toggle default move/read behavior

/
Shift-/
Control-/

Announce cursor

Toggle cursor mode
Toggle follow mode

Shift-*
Announce filter status

Toggle filter enable mode

+ Enable filter (filter enable mode only)
Disable filter (filter enable mode only)

m_

,11

|

7.4 Class and Object Template Attributes

This section describes the attributes that are supported in class and object templates. Recall that
both object and class attributes support the same attributes; they merely provide different
mechanisms for naming the objects those attributes will be associated with.

Each entry here lists the name of the attribute that appears in the template, the type of the attribute,
and the name of the fallback for the attribute, which appears in the configuration file.

navigable BOOLEAN defaultClassNavigable

Indicates whether or not the object will be considered "navigable" by UltraSonix. Classes that are
not navigable are essentially "invisible" and are ignored by the system.

shell BOOLEAN defaultClassShell

Indicates whether or not the object will be treated as a shell (top-level window). The fallback
should be set to TRUE and overridden for non-shell classes. This is so application shells (which
are created with a class name different than ApplicationShell) will be correctly detected as top-level
windows.

allowTextMode BOOLEAN defaultClassAllowTextMode

If set to TRUE, allowTextMode indicates that the object will support text mode navigation.

sensitive BOOLEAN defaultClassSensitive

The sensitive attribute is used to indicate whether or not an object is sensitive (that is, whether it
will accept user input). This is typically set to a procedure that retrieves the value of the sensitive
resource from the object.

!
I

looped BOOLEAN defaultClassLooped

Indicates whether the "entry" sound for this object will be looped (played repeatedly).

mappedWhenManaged BOOLEAN defaultClassMappedWhenManaged

Determines whether objects that are managed will also be mapped. This attribute is typically set to
a procedure that retrieves the value of the mappedWhenManaged resource from the widget.

allowEscape BOOLEAN defaultClassAllowEscape

Indicates whether it is possible for users to exit dialog boxes by navigating up and out of them (if
set to TRUE), or whether users are confined to dialog boxes as long as they are posted (if set to
FALSE).

volume INTEGER defaultClassVolume

Thevolumeatwhichto play the"entry"soundfor thisobject.

muffle INTEGER defaultClassMuffle

Theamountof muffling to use when playing the "entry" sound for this object.

rate INTEGER defaultClassRate

The rate of speed at which to play the "entry" sound for this object.

delay INTEGER defaultClassDelay

The amount of delay before playing the "entry" sound for this object.

leftMargin INTEGER
rightMargin INTEGER
topMargin INTEGER
bottomMargin INTEGER

defaultClassLeftMargin
defaultClassRightMargin
defaultClassTopMargin
defaultClassBottomMargin

The values of the margins for this object. These attributes are only used by the ProtoTextRep
class; typically they are set to procedures that retrieve the appropriate resources from the widget.

sound STRING

The "entry" sound for this object.

defaultClassSound

:11

1

speakOnEnter STRING defaultClassSpeakOnEnter

The string to speak when,this object is entered.

speakOnlnfo STRING defaultClassSpeakOnlnfo

A string of "extra" text that is spoken when the Info action is invoked on this object.

unsafeResources STRINGLIST defaultClassUnsafeResources

A list of the resources that may be set by the application or widget in a way that bypasses the RAP
hooks. Unsafe resources must be retrieved explicitly each time they are used, and are thus
extremely expensive. (NOTE: unsafeResources is not currently implemented.)

creation INTEGER
destruction INTEGER

mapped INTEGER
unmapped INTEGER
managed INTEGER

defaultClassCreation
defaultClassDestruction

defaultClassMapped
defaultClassUnmapped
defaultClassManaged

..... _ " -=-'I II I IIlIIIII II

unmanaged INTEGER
realized INTEGER

unrealized INTEGER

defaultClassUnmanaged
defaultClassRealized
defaultClassUnrealized

The values of these attributes are retrieved each time an object is created, destroyed, and so on.
They are typically set to procedures that invoke some widget-instance or widget-class specific
functionality. In essence, they provide a widget-specific variant of the Action mechanism.

srFilters STRINGLIST defaultClassSrFilters

A list of the filters that should be installed on this object's screen reader.

srDelimitChars STRING defaultClassSrDelimitChars

A string of the characters that are used as delimiters by the object's screen reader.

srTerminalChars STRING defaultClassSrTerminalChars

A string of the characters that are used as terminals by the object's screen reader.

7.5 Application Template Attributes

readySound STRING defaultAppReadySound

The sound to play when this application becomes ready. (NOTE: This attribute is currently not
implemented.)

shutdownSound STRING defaultAppShutdownSound

The sound to play when this application shuts down. (NOTE: This attribute is currently not
implemented.)

t

blockCursor BOOLEAN defaultAppBlockCursor

Indicates whether the block-cursor detection code should be used in this application. The block-
cursor detection code is used to track the location of the application cursor in text areas.

7.6 Actions

Actions are call-out points that are invoked when the UltraSonix off-screen model changes.
Arbitrary TCL code can be associated with actions, and will be invoked whenever the action is
evaluted.

This section describes the actions built in to UltraSonix, when they are called, and the arguments
that are passed to the TCL procedures associated with them.

BrailleProg

Invokedwheneverthe"prog"buttonon thebraille keyboardis pressed.

BrailleHome

Invokedwheneverthe"home"buttononthebraillekeyboardis pressed.

BrailleCursor

Invoked whenever a cursor button on the braille keyboard is pressed.

BrailleUpBounds

Invoked whenever the up key is pressed on the braille keyboard, and the new position would pass

beyond the top of the data buffered in the braille loadable module.

BrailleUp

Invoked whenever the up button is pressed on the braille keyboard.

BrailleDownBounds

Invoked whenever the down key is pressed on the braille keyboard, and the new position would

pass beyond the bottom of the data buffered in the braille loadable module.

BrailleDown

Invoked whenever the down button on the braille keyboard is pressed.

lit

BrailleLeftBounds
J

Invoked whenever the left key is pressed on the braille keyboard, and the new position would pass
beyond the edge of the data buffered in the braille loadable module,

BrailleLeftJumpScroll

Invoked whenever the braille display jump scrolls left.

BrailleLeft

Invoked whenever the left button on the braille keyboard is pressed.

BrailleRightBounds

................... Ii1111Ilrrf 1

Invokedwhenevertheright key ispressedonthebraille keyboard,andthenewpositionwould
passbeyondtheedgeof thedatabufferedin thebrailleloadablemodule.

BrailleRightJumpScroll

Invokedwheneverthebrailledisplayjump scrollsright.

BrailleRight

Invokedwhenevertherightbuttonon thebraillekeyboardispressed.

ClientCreated clientname,clientID

Invokedwheneveranewclient hasbeendetectedbut isnotyet ready.

ClientDeletion clientID

Invokedwheneveraclient isdestroyed.

GoTo objID

InvokedthroughoutUltraSonixwhenevertheuser'scurrentpositionmustbechanged.

ClientReady clientID

Invokedwheneveranewclienthasbecomereadyfor use.

||
lit

17
It

11I

i;
t

Ik

t
b
I,

i

I

ClientShutdown client ID

Invoked whenever the client shutdown process is initiated.

StopSpeaking

Generated from an external keypad when the 0 key is pressed.

ReadThisChar

Generated from an external keypad when the 1 key is pressed.

DownPressed

Generated from an external keypad when the 2 key is pressed.

ReadThisWord

Generatedfrom anexternalkeypadwhenthe3 keyis pressed.

LeftPressed

Generatedfrom anexternalkeypadwhenthe4 key ispressed.

FivePressed

Generatedfrom anexternalkeypadwhenthe5 keyis pressed.

RightPressed

Generatedfrom anexternalkeypadwhenthe6 keyis pressed.

ReadThisSentence

Generatedfrom anexternalkeypadwhenthe7 or 9 key ispressed.

UpPressed

Generatedfrom anexternalkeypadwhenthe8key ispressed.

ChangeTextMode

Generatedfrom anexternalkeypadwhenthe. key ispressed.

I|

It
It

l
|
II,

Ii,

t
b
Ii,

i
t

SelCurrent

Generated from an external keypad when the enter key is pressed.

PopupReturn

Invoked whenever the a popup window is dismissed.

EnterNotify obj ID

Invoked whenever the pointer enters a new object.

ButtonPress obj ID, button state, client ID

Invoked whenever a button press is detected.

m

ShellMapped obj ID, client ID

Invoked whenever a new top-level window is mapped.

MapNotify obj ID, client ID

Invoked whenever any non-shell object is mapped.

XtObjectCreation obj ID, parent ID, obj class

Invoked whenever any object is creatd.

XtObjectDestroyed obj ID

Invoked whenever any object is destroyed.

XtObjectChange old obj name, old obj ID, new obj ID

Invoked whenever the current location changes.

XtObjectUnmapped obj ID, client ID

Invoked whenever an object is unmapped.

XtObjectRealized obj ID

Invoked whenever an object is realized.

¢

XtObjectUnrealized obj ID

Invoked whenever an object is unrealized.

XtObjectManaged obj ID

Invoked whenever an object is managed.

XtObjectUnmanaged obj ID

Invoked whenever an object is unmanaged.

ULTRASONIX

1.0 Introduction

2.0 Handling Input
2.1 Basic Concepts
2.2 Adding New FDInterest Subclasses

3.0 Interface Modeling
3.1 Fundamentals

3.2 The Application Model Manager
3.3 Representing Clients
3.4 Representing Widgets and Gadgets
3.5 Representing Resources
3.6 Miscellaneous

3.6.1 Graphics Contexts
3.6.2 Fonts

4.0 Information Retrieval
4.1 Introduction
4.2 The Remote Access Protocol
4.3 Rendezvous

4.4 Client-Side Support
4.5 UltraSonix Support
4.5.1 RAP Agent Library
4.5.2 RAP Listener Class
4.5.3 RAP Class

5.0 Text Modeling
5.1 Introduction

5.2 Text Modeling in UltraSonix
5.3 How UltraSonix Creates TextReps

5.4 TextRep Basics
5.5 The TextRep Programming Model
5.6 ProtoTextRep
5.7 XmTextRep
5.8 Support Classes
5.8.1 TextData
5.8.2 TextAttr

5.8.3 TextRepDebug

6.0 The ScreenReader
6.1 Introduction
6.2 Functional Overview

6.3 Implementation Overview
6.3.1 CursorRep
6.3.1.1 Terminology
6.3.1.2 Overview
6.3.2 ScreenReader

6.3.2.1 Terminology
6.3.2.2 Overview
6.3.3 Filters

DESIGN DOCUMENT

In,

II

I| '
%

Ii

It
Ii

It

I:

b_
|,

1

7.0 Interpreted Rules ***

8.0 Configuration Subsystem
8.1 The Template Files
8.2 Defaults and General Configuration File
8.3 Declaring New Attributes with mercator.attrib
8.4 Adding New UltraSonix Configuration Variables.
8.5 Accessing Attributes Programmatically
8.6 Writing Templates to Files
8.7 Re-Sourcing of Template and Configuration Files

9.0 Device-Specific Code
9.1 Motivation
9.2 Loadable Base Classes
9.2.1 The Audio Generic API

9.2.2 The Speech Generic API
9.2.3 The Braille Generic API

9.3 Writing New Loadables
9.3.1 Basic Concepts
9.3.2 Writing a Loadable Module
9.3.3 Compiling a Loadable Module
9.3.4 Configuration
9.4 Existing Loadable Modules
9.4.1 Dectalk

9.4.1.1 Using the Dectalk Speech Synthesizer with UltraSonix
9.4.1.2 Check List

9.4.1.3 Implementation Details
9.4.1.4 Server Options
9.4.2 DectalkX

9.4.2.1 Using the Dectalk Express Speech Synthesizer with UltraSonix
9.4.2.2 Check List

9.4.2.3 Implementation Details
9.4.2.4 Server Options
9.4.3 TrueTalk

9.4.3.1 Using the Entropic TrueTalk Speech Synthesizer with UltraSonix
9.4.3.2 Check List

9.4.3.3 Implementation Details
9.4.3.4 Compatibility Issues
9.4.4 NetAudio

9.4.4.1 Using the NetAudio System with UltraSonix
9.4.4.2 Implementation Details
9.4.5 AudioFile

9.4.5.1 Using AudioFile with UltraSonix
9.4.5.2 Implementation Details
9.4.3.3 Caveats
9.4.6 Alva
9.4.7 Genovations

9.4.7.1 Using the Genovations Keypad with UltraSonix
9.4.7.2 Implementation Details

10.0 Miscellaneous Topics
10.1 Process Management
10.1.1 Introduction to Process Management
10.1.2 Using the Process Manager: Basic

10.1.3UsingtheProcessManager:Advanced
10.1.4ProcessManagerImplementation
10.2TheConsole
10.2.1UsingtheUltraSonixConsole
10.2.2Startinga Console
10.2.3ConsoleEnvironment
10.2.4Example
10.2.5ImplementationDetails

11.0Appendix:TCL CommandReference
11.1TCL Interfaces to C++ Methods

11.1.1 Diagnostic Output
11.1.1.1 Displaying Error Messages
11.1.1.2 Getting and Setting Error Levels
11.1.2 Operations on Clients
11.1.2.1 Determining the Current Client
11.1.2.2 Moving Between Clients
11.1.2.3 Client Names

11.1.3 Operations on Objects
11.1.3.1 Determining the Current Object
11.1.3.2 Converting Object Names
11.1.4 Binding Events and Actions
11.1.4.1 Associating TCL Procedures and Events
11.1.4.2 Actions

11.1.5 Using the Braille Terminal
11.1.5.1 Sending Text to the Braille Device
11.1.5.2 Jump Scroll Mode
11.1.5.3 Setting the Braille Translation Table
11.1.5.4 Querying Braille Device Capabilities
11.1.6 Console Operations
11.1.7 Connecting to Clients
11.1.8 Key and Button Events

11.1.8.1 Using Keyboard Identification Mode
11.1.8.2 Generating Keyboard Input to Applications
11.1.8.3 Generating Mouse Input to Applications
11.1.8.3.1 Button Events

11.1.8.3.2 Moving the Ct_rsor

11.1.9 Retrieving Properties of the Model
11.1.9.1 Parent/Child Relationships
11.1.9.2 Object Location and Geometry
11.1.9.3 Names and Other Object Attributes
11.1.10 Generating Non-Speech Audio Output
11.1.11 Shutting Down UltraSonix
11.1.12 Accessing Resources
11.1.13 Speech Output
11.1.13.1 Producing Speech
11.1.13.2 Querying Speech Device Capabilities
11.1.14 Low-Level X Window Operations
11.1.14.1 Using Properties
11.1.14.2 Using Selections
11.1.14.3 Accessing Window Attributes
11.1.14.3 Window and Pointer Management
11.1.15 Using the ScreenReader
11.1.15.1 Changing ScreenReader Parameters

i

11.1.15.2 Using Cursors
11.1.15.3 Using Filters
11.1.15.4 Reading and Moving Through Text
11.1.15.5 Miscellanous ScreenReader Functions
11.1.16 Miscellaneous Text-Related Functions

11.1.16.1 Determining the Location of Text
11.1.16.2 Debugging the Text Model
11.1.17 Logging User Activities
11.1.18 Template and Configuration Management
11.1.18.1 Using Template Values from TCL
11.1.18.2 Writing New Template Files
11.1.18.3 Retriving Configuration Attributes
11.1.18.4 Loading Files
11.2 "Pure" TCL Commands
11.2.1 Audio

11.2.2 Interface Helpers
11.2.3 Navigation
11.2.4 Text Mode
11.2.5 Miscellanous

12.0 Appendix: RAP Protocol Specification

13.0 Appendix: Known Bugs

1.0 INTRODUCTION

This document contains details about the implementation of various aspects of UltraSonix. The
goal of this document is to provide enough information about key UltraSonix subsystems that
future developers will have a "head start" on understanding and maintaining the code.

Most of the sections of this document were originally written as "stand-alone" design documents
during the course of development. We have tried to keep the information here as up-to-date as
possible but, of course, the sourcecode is the final arbiter of the implementation.

2.0 HANDLING INPUT

2.1 Basic Concepts

All input to UltraSonix is done through the FDInterest class. If you want to use a new input
stream (for example, a new device which provides input to the system), you create a new subclass
of FDInterest. The FDInterest base class tracks all of the instances of its subclasses, and
remember which file descriptors they are interested in (hence the name "FDInterest").

UltraSonix's central loop is a call to FDInterest::MainLoop0. This code blocks in poll(), waiting
for activity to occur on any of the descriptors it is looking at. When activitiy occurs (for example,
data is available for reading), MainLoop0 determines the specific FDInterest subclass which has
expressed an interest in that descriptor, and calls the HandleActivity0 method on it.

2.2 Adding New FDInterest Subclasses

Each subclass of FDInterest has the following responsibilities:

1. Tell the FDInterest class which descriptors it will be responsible for.

In the constructor for the subclass of FDInterest, you should open any descriptors that you will be
responsible for (sockets, files, devices, etc.). You then need to tell the FDInterest base class about

these descriptors, so that it can add them to its poll set. You do this by first calling

AddFDInterest(fd);

to create an association between your instance and the descriptor, and then by calling

SetIOMask(fd, MASK);

to tell the FDInterest class what types of activity you will handle. Most of the time you are
interested when data is available for reading, so you can pass the symbol "ARead" as the MASK
parameter to Se_IOMask(). Look at FDInterest.h for other mask symbols.

Note that you can later change the types of activity you are interested in via other calls to

SetlOMask0 (for example, to be notified whenever a descriptor is writable or has an exceptional
condition). You can also be "interested in" multiple descriptors, although no two FDInterest
subclasses can be interested in the same descriptor.

2. ImplementaHandleActivitymethodto dealwith dataavailableon itsdescriptors.

YoursubclassMUST implementaHandleActivity0methodwhichwill beautomaticallycalled
wheneveranyof thedescriptorsyouhavespecifiedan interestin (viaAddFDInterest0)have
activityon themthatmatchestheactivitiesyousaidyouwouldhandle(viaSetlOMask0).

HandleActivity0is calledwith two arguments:thedescriptorandthetypeof activitywhichhas
beenseenon it (for example,readabilityor writability). HandleActivity0shouldreturnanon-zero
valueif someerroroccurs.

This is thefunctionwherethe"smarts"of yourFDInterestsubclassreside.Only yourclasscan
knowhow to interpretdatafrom its file descriptor.

NOTEthatevenif youdon'tspecifythatyouareinterestedin errorsandexceptionalconditions
(viaacallto SetlOMask0),HandleActivity0will still becalledwheneverthesespecial
conditionsoccur.

3. Implementthe"shutdown"protocolrequiredto cleanlyterminateanFDInterestsubclass.

Therearetwocasesin whichanFDInterestsubclassmaywish to deleteitself. In thefirst, the
subclassdetectssomeexceptionalconditionwhichcannotallow it to continue(for example,if a
subclassrepresentsaconnectionto anotherprocess,andtheprocessdies,thesubclassmaywish
to bedeleted).In thesecond,theuserhasrequestedthatUltraSonixshutdowncompletelyandthe
systemwill messageeachsubclassto shutthemselvesdownin anorderlymanner.

Sinceothercomponentsin UltraSonixmaybedependentonyoursubclass,it is importantthatyou
follow theshutdownprotocoloutlinedhere.Thisprotocolensuresthattheshutdownof FDInterest
subclassesis properlyorderedandthatall referencesto thesubclassarecleanedup.

If aclientwishesto shutitselfdown,it simplycallsRemoveFDInterest(fd)to tell theFDInterest
baseclassthatit isno longerhandlingactivityon thespecifieddescriptor.Next,it calls
MarkForCleanup0to tell FDInterestthatit is readytobedeleted.FDInterestwill actuallydelete
thesubclassatsomepoint in thefuture,afterall necessaryhousekeepinghasbeendone.

WhenUltraSonixwishesto shutdownanFDInterestsubclass,it callstheShutdown()methodon
thatsubclass.All classes/terivedfrom FDInterestshouldimplementShutdown()andperformany
class-specificshutdownactivitieshere. Beforereturning,Shutdown()shouldcall
MarkForCleanup0to ensurethattheFDInterestclasswill actuallybedeleted.

3.0 INTERFACE MODELING

3.1 Introduction

UltraSonix keeps a model of the user's "desktop" environment as it runs: all of the applications
currently executing. This model is stored as an in-memory collection of objects, representing
applications, widgets and gadgets, and resources within widgets and gadgets.

This model can be queried to retrieve information about graphical interfaces. It is automatically
updated via the RAP protocol as applications change state.

3.2Fundamentals

Thethreemostimportantclassesin theoff-screen model, the AppModelManager, the Client, and
the XtObject, are all derived from class Storage. The Storage base class enforces an API for
mapping from events to actions.

All Storage-derived classes maintain an "Event/Action" dictionary. UltraSonix allows the
execution of arbitrary "actions" when certain events are received (this is how the system
implements keybindings). The association between events and actions may be established
globally, on a per-client basis, or a per-widget basis. Each subclass derived from Storage
implements a different "level" of these mappings.

Note that all UltraSonix interface modeling data structures store pointers to the actual data objects.
Thus, no copies are made (either in or out) when data is inserted or retrieved from the model.

Also note that both Clients and XtObjects have unique "names" (which are really strings) that are
used to identify them. For XtObjects, these names have the form XtObjectXXX (where XXX is
some unique number); for clients, these names have the form ClientXXX (again, where XXX is
some unique number). These names are used throughout the system to uniquely identify a given
object instance, and are visible through the TCL interfaces.

3.2 The Application Model Manager

The Application Model Manager (AMM) is the outermost "entry point" into the off-screen model.
When UltraSonix starts, it instantiates one global instance of an object of class Mercator, which
holds all global data that is needed by the system. The Mercator object creates and holds a pointer
to one AppModelManager instance, which stores the offscreen model. Thus, there is only one
instance of this object, representing the entire desktop environment.

The AMM stores the following data representations:

clientList

currentClient

I

clientNames

xtobjectNames

xtobjectWindows

eventActions

The authoritative list of all client

applications running on the desktop.
A pointer to the current client (may
be NULL if there is no current

client).
A mapping of client names to client
instances. This data structure allows

the lookup of clients based on their
identifiers (names).
A global mapping of XtObject names to
XtObject instances.

A global mapping of XtObject windows
to XtObject instances.
The global map from event types to
actions to be executed.

The AMM provides the "global" mappings that represent the user's universe. Thus, the AMM
maintains a list of all clients, and a way to retrieve specific clients given their names.

Likewise, it also maintains global mappings of XtObjects (representations of widgets and gadgets).
The "typical" way to access XtObjects is through the client that contains them, but often callers do

not know a priori the client containing a given object (usually because the caller only knows the

identifierorwindow of theobject).Thus,theAMM maintainsmappingsthatindexXtObjectsby
theseattributes.

3.3RepresentingClients

RunningapplicationsarerepresentedbyClient instances. Client objects maintains all salient
attributes of a client application:

clientName

clientClass

id

uniqueName

fontCache

xtObjectObjectlds

currentI.x_ation

topWindows

eventActions

ready

The name of this client (as provided
by the application writer).
The class of this client (as provided
by the application writer).
The server-supplied XID representing
this client.

The string uniquely identifying this
application.
A cache of the fonts in use by this
client.

All of the XtObjects contained in this
application, indexed by object IDs.

The current location within the

client, stored as a pointer to an
XtObject (or NULL if there is no
current location).
A list of all the "top-level"
XtObjects comprised by this
application.
The client-scope mapping of events to
actions.

A boolean value, indicating whether or
not the client is ready for
interaction.

Most of the data stored by clients is self-explanatory. The fontCache member maintains a
representation of the attributes of all fonts in use by this application. The topWindows member is a
"short-cut" data structure _'or maintaining information about top-level windows. The ready

member indicates whether a client has finished the RAP start-up phase (a new client instance is
marked as not ready until UltraSonix receives information about its widget hierarchy and
resources).

3.4 Representing Widgets and Gadgets

All widgets and gadgets are represented as instances of class XtObject. XtObjects store all
information relevant to a particular widget. The data contained in XtObjects includes:

id

myName

myClass

The Xt-internal identifier for this

widget (guaranteed to be unique within
a given client).

The name for this widget, as supplied
by the application writer.
The class for this widget, as supplied
by the application writer.

longName

uniqueName

xtObjectldent

parent

window

x,y

width,height
mapped
managed
borderWidth
grabslnstalled

resources

eventActions

classDictionary

sreader

textrep

client
children
popReturn

TheXrm-style(dotnotation)nameof
thiswidget,suitablefor usein
.Xdefaultfilesor in objecttemplates.
TheUltraSonix-internalstring,
uniquelyidentifyingthis instance.
A numericrepresentationof the
uniqueNamestring.
A pointerto theXtObjectthatis the
parentof thisobject(maybeNULL if
thisobjecthasnoparent).
TheX WindowID of thisobject's
window.
Thelocationof thisobject,relative
to its parent.
Thesizeof thisobjectin pixels.
Booleanindicatingmapstatus.
Booleanindicatingmanagedstatus.
Width of thewidgetborder,in pixels.
A book-keepingboolean,usedto
indicatewhetheror notwe'vealready
installedourneededkey grabson this
object.
A pointerto aResourceCacheinstance,
which storesall of theresources
associatedwith thisXtObject.
Theper-widgetmappingof eventsto
actions.
Theper-widgetclassmappingof events
to actions.
A pointerto thescreenreader
instanceassociatedwith thisXtObject
(if thereis one).
A pointer to the text rep instance
associated with this XtObject (if
there is one).
The client containing this object.
A list of all children of this object.
A bookkeeping variable, popReturn
holds a pointer to the object
previously containing focus before a
popup appeared.

Most of these members are self-explanatory, but a few require a bit more exposition. The window
member contains the 32-bit window ID of the widget's window. If the widget is not yet realized

(that is, it has no window associated with it), the value will be RapUnrealized (#defined to be 0).
If the widget is a gadget (windowless widget), the value will be RapGadget (#defined to be 2).

The resources member is described more fully below, under "Representing Resources."

The classDictionary member is a dictionary of pointers to event/action dictionaries. The key to this
dictionary is a string, which represents the class names of widgets. The resulting value is a set of
event-to-action bindings for widgets of this class. This dictionary, which is static (shared by all
XtObject instances), is used to allow the association of events to actions on a per-widget class

basis (as opposed to a per-widget instance basis).

If agivenobjectsupportstextmode(asindicatedby the"allowTextMode"attributein its template),
thenaTextRepinstancewill becreatedin thetextrepmember.Thefirst timeauseractuallyenters
textmodein thisXtObject,ascreenreaderinstancewill becreated(andstored)in thesreader
memberto provideaninterfaceto thetextrep.

The popRetum member is used to essentially create a popup return stack within the XtObject
instances themselves. When a popup appears, UltraSonix warps the user to the popup, and stores
the old current location in the popRetum member of the popup. When the popup disappears, the
current location is set to the value of its popReturn. This scheme works for arbitrary depths of

popups.

3.5 Representing Resources

The "outer" representation of resources is a class called ResourceCache, defined in Resource.h.
An instance of a ResourceCache will be associated with every XtObject and used to store the
resources contained by that object.

ResourceCache provides an interface to retrieving and setting resource values. The implementation
of ResourceCache is completely hidden (and fairly complex). Internally, ResourceCache maintains
dictionaries of Resource instances. Resource instances each represent one particular resource: its
name, class, type, and value. Values are represented by the ResourceValue type, which supports
arbitrary-sized data representations.

All type-specific information needed to represent a given resource value is maintained by an object
called the ResourceTypeManager. The ResourceTypeManager provides a mapping between
resource types ("XmString", for example) and information about the size of such representations,
how to copy and print resources of such type, and so on.

At startup time, UltraSonix "registers" a handful of common types with the
ResourceTypeManager. Registration creates an association between the resource type name and
information about the size of the type and functions needed to print, store, copy, and free objects
of the type.

UltraSonix ignores resources with types that have not been registered with the
ResourceTypeManager, since it cannot know how to interpret the binary value data returned by
RAP unless the type has been registered.

Registration for new types should be added to the function InitializeResourceTypeManager0 in
Resource.cc.

See the file Resource.cc for more information regarding how resources are stored and managed.

CAVEAT: The current resource code is specific to 32-bit machines. The code for decoding
resource values is word-size dependent, and will have to be fixed to run on non-32-bit machines.

3.6 Miscellaneous

In addition to the high-level (Xt-based) representations of X interfaces, there are a number classes
used to represent lower-level (X protocol-based) constructs. This section discusses two of those,
used to store Graphics Contexts and Fonts.

3.6.1GraphicsContexts

GraphicsContexts,orGCs,arestructuresthathold informationusedto parameterizeadrawing
operation.Examplesof informationcontainedin GCsincludeline width, colorinformation,and
font information. GCsareusedin all X protocolrequestsinvolvingon-screenrendering.

UltraSonixstoresGCinformationsothatit candeterminethefont beingusedto render text (for
ProtoTextRep text modeling), and to capture attribute information about drawn text.

A class called GCValueDict is instantiated in each RAP object to maintain a mapping from GC IDs
(32-bit numeric values) to instances of class GCValue. GCValue is the UltraSonix-internal
representation of a Graphics Context.

Each GCValue maintains a Graphics Context structure, and supports comparison operations (for
determining if the color of two adjacent pieces of text differ, for example). GCValues are primarily
used by the ProtoTextRep class.

3.6.2 Fonts

Fonts information is stored in objects of class FontCache. FontCache maintains a dictionary of
font attributes (represented as XFontStructs), indexed by X Font identifiers (which are 32-bit
values).

Each client keeps its own FontCache, since the identifiers assigned to each font are particular to a
given client (thus, even if two clients open the same font, the IDs they use to refer to these fonts
will be different).

The FontCache class provides methods for adding, removing, and retrieving font attribute
information from the cache. There are also a number of "short-cut" functions for determining
bounding regions around strings of text, given a font ID that the text is rendered in. These
methods are used extensively by the ProtoTextRep class.

Note that it is impossible to determine actual font names from font IDs, only font attributes such as
size information.

Y

4.0 INFORMATION RETRIEVAL

4.1 Introduction

UltraSonix retrieves information about graphical interfaces from running applications.
Applications that run under UltraSonix must be modified to use different versions of the MIT X

Window System libraries, that understand the Remove Access Protocol (RAP). This protocol is
used to communicate between applications and UltraSonix.

4.2 The Remote Access Protocol

The Remote Access Protocol (RAP) is a binary protocol that is exchanged between applications
(called "clients") and external programs, such as screen readers and automated testing tools (called
"agents").

Theprotocolcontainsthreedifferenttypesof messages:

Requests

Reply

Notify

Travel from agent to client, and must be
answered with a Reply.

Travel from client to agent, in response to a
Request message.

Travel from client to agent, and are
unsolicited.

Requests and replies are used when the agent needs to know some particular piece of information
about a client: for example, the position of a specific widget on the screen. Notifies are generated
asynchronously by clients whenever their state changes (when widgets are created, for example).

The specifics of the protocol are described in Appendix A, "RAP Protocol Specification," and are
also available on the World Wide Web, at the URL:

http://www.cc.gatech.edu/gvu/multimedia/x-agent/index.html

The "X-Agent" mailing list run by the X Consortium is used for discussion of RAP and RAP-
releated ideas.

The current RAP implementation is available from Georgia Tech at:

ftp://multimedia.cc.gatech.edu/pub/rap-sample.tar.Z

The protocol uses ICE (Inter-Client Exchange) as its transport, and expects to work with the
HooksObject present in the R6 libXt implementation, and the XESetBeforeFlush client-side
extension in the R6 libX 11 implementation.

4.3 Rendezvous

(NOTE: This section describes the rendezvous mechanism currently used by UltraSonix. A new
rendezvous mechanism is being drafted by the X Consortium as an extension to the Inter-Client
Communication Conventions Manual (ICCCM).)

When UltraSonix starts, i{ creates an unmapped window as a "holder" for a property. This
property, called "IceNetworklds," contains the ICE network address on which UltraSonix will

listen for incoming client connections. The value of this property is a comma-separated list of ICE
network IDs (see the ICE library documentation for details on how this list is created). At this
point, UltraSonix begins listening on the ICE network IDs it has published, indicating that it is
now willing to accept connections from clients.

Next, UltraSonix solicits SubstructureNotify events from the root window. UltraSonix detects the

presence of a new application by looking for its top-level window to be mapped.

Once a new child of the root window is mapped, UltraSonix calls XmuClientWindow0 to

determine the "application" window (which will be a child of the window manager frame mapped
directly as a child of the root window). Once this window has been identified, UltraSonix

generates a ClientMessage event to the application. The format of this ClientMessage is as follows:

window

type
message_type

The application's window.
ClientMessage

Atom("ExtemalAgent")

I

format 32
data.l[0] AtomCRAP")
data.l[1] Atom("IceNetworklds")

data.l[2] The agent's window
data.l[3] 0

data.l[4] 0

The first longword of data contains the atomized name of the protocol the agent wishes to speak (in
this case, "RAP"). The second longword contains the atomized name of the property on the
agent's window containing the agent's ICE listener address, and the third longword contains the
window ID of the agent window on which this property exists. The remaining data areas are not
used.

When the client receives this message, it should retrieve the value of the property specified on the
agent's window, and open an ICE connection to the agent at the address specified there.

4.4 Client-Side Support

Clients must be extended to support RAP and RAP rendezvous. The specific infrastructure
requirements for clients are:

• They must be based on Xt and X11.
• Their Xt must support the HooksObject (first present in X11R6).
• Their Xlib must support the XESetBeforeFlush client-side extension.
• They must be linked with the RAP client-side protocol library.
• They must have an event handler installed on their application shells to respond to the

ClientMessage events used for rendezvous.
• (OPTIONAL) XGCList support.

UltraSonix ships with a version of the MIT X 11 R5 libraries that has been extended with the R6
implementation features (HooksObject and BeforeFlush extension). These libraries also have a
dependency on libRAPclnt (the RAP client-side protocol library), so this library will be loaded
automatically whenever libXt or libX 11 is used. We have extended the ShellRealize method in
Shell.c to install the ClientMessage event handler on application shells.

When the client receives the rendezvous message, it installs various callback procedures into the
HooksObject callback list, and a flush procedure into XESetBeforeFlush0, along with several
other routines. These routines are responsible for generating the asynchronous Notify messages to
the agent. The client also retrieves the agent's window property and establishes an ICE connection
to it.

At this point the client is fully connect and will respond to any RAP messages sent to it, and will
generate RAP Notifies.

The optional XGCList support mentioned above is a client-side extension that we have developed
to maintain a client-side mapping from GC IDs to GC structures. If this extension is enabled, RAP
agents will be able to ask clients for the graphics context information corresponding to GC IDs.

4.5 UltraSonix Support

Supportfor theRAPprotocolin UltraSonixisdividedinto threecomponents:A low-level
protocollibrary, aRAPListenerclass(responsiblefor respondingto newRAP connections),anda
RAPclass(responsiblefor dealingwith singleRAPclients).

4.5.1RAPAgentLibrary

TheRAPAgentlibrary,libRAPagnt,is a low-levellibrarydesignedto encapsulatetheRAP
protocolandhideit behindaneasy-to-useAPI. RAPAgentlibraryAPIsallowcallersto generate
RAP messagesto aclientand,whenmessagesarereceived,breaktheircontentsout intostructures
for easyprocessing.

UltraSonixlinks againstthis library for protocolprocessing.

4.5.2RAPListenerClass

TheRAPListenerclassisresponsiblefor listeningfor incomingRAPconnectionrequestsfrom
clients. Thereisoneinstanceof RAPListenerin all of UltraSonix.

WheneverUltraSonixdetectsanewly-mappedwindow,it callstheInitiateConnection0methodon
RAPListener.RAPListenerbeginstherendezvousprotocol(issuingclientmessageevents,etc.)
andwaitson theclientto respondby connectingto the listeneraddress.

Onceaclienthasconnected,RAPListenerbeginstheICE protocolsetupandnegotiationphase.At
thispoint,theclientandtheagentareonly "partially"connected:acommunicationschannelis
establishedbut theyhavenotagreedonprotocolversions,etc.

Oncethenegotiationprocesshascompleted,RAPListeneracceptstheconnectionandcreatesanew
instanceof theRAPclassto dealwith theprotocolneedsof thisoneclient.

4.5.3RAP Class

TheRAPclassisresponsiblefor communicatingwith oneparticularclient. Thus,thereisa
separateRAPinstancefo_;eachclient currentlyconnectedto UltraSonix.

RAP instancesarecreatedby RAPListenerasnewconnectionscomein from clients. WhenaRAP
objectis first created,it ensuresthatit iscompletelyconnectedto itsclient, andcreatesanewClient
instancein theapplicationmodelmanager.At thispoint,theRAPobjectis responsiblefor all
communicationwith thisparticularclient.

Onceconnectionis fully established,UltraSonixwill (viatheAppModelMgr)generateaseriesof
initial messagesto theclient. Currently,thesemessagesinclude:

GetGCValuesRequestDownloadall GCsinuseby theclient.
HelloRequest Confirmapplicationtoplevelwindow

ID.
FullQueryTreeRequestDownloadtheapplication'swidget

hierarchyandresources.
SelectEventRequestTell theapplicationswhichX events

we wishto beforwardedto us.
SelectRequestRequestTell theapplicationswhichX requests

we wishto beforwardedto us.

TheeventsUltraSonixsolicitsfrom applicationsinclude:

KeyPress
ButtonPress
EnterNotify

MapNotify

UnmapNotify

Usedfor echoinguserinput.
Usedfor echoinguserinput.
Optionalgenerationof focuschange
feedback.
Ensurethatthemodelisconsistent
with respectto maps/unmaps.
Ensurethatthemodelisconsistent
with respectto maps/unmaps.

Therequests UltraSonix solicits from applications include:

X_CreateGC

X_ChangeGC
X_CopyGC
X_FreeGC

X_ImageText 16
X_PolyText 16
X_ImageText8
X_PolyText8
X_ClearArea

X_CopyArea
X_PolyFillRectangle
X_ReparentWindow

All of the GC, ImageText, PolyText,
CopyArea, CiearArea, and FillRectangle
requests are used by ProtoTextRep to
keep its model of application text
areas up-to-date.

Ensure that the model remains
consistent when windows are

reparented.

The RAP object is a subclass of FDInterest, and as such has a HandleActivity0 method on it for
dealing with messages (either Replies or Notifies) received from the client. The HandleActivity0
method on the RAP object is essentially where the "brains" about how to interpret the RAP
protocol live. The code here must be able to handle and make sense of any RAP messages
generated by the client.

The RAP object also has methods on it for generating requests to the client.

The RAP object flags itself for deletion (via the FDInterest mechanisms) and shuts itself down
whenever the ICE connection to its client is severed.

5.0 TEXT MODELING

5.1 Introduction

One of the most important tasks of any screenreader is capturing and modeling the textual
information present on the computer screen. In many regards, capturing and presenting textual
information accurately is more difficult than capturing and presenting the graphical controls of a
computer interface. This difficulty is due to the fact that the graphical controls in an interface
typically have a one-to-one correspondance with the programming constructs used to create the
interface (widgets correspond to on-screen push buttons, for instance).

In comparison,in mosttoolkitsfor graphicalapplicationsonly rudimentarysupportis availablefor
creatingrich textualpresentations.Typically theprogrammeris left to build thefacilities for
"beyondbasic"textdisplaybyhand.

Thus,it is left to thescreenreaderto attemptto detectwhethertextis beingrenderedin two-column
format,or whetherwidespacesbetweenlinesrepresentblank linesor simpledouble-spacing.

5.2TextModelingin UltraSonix

In UltraSonix,textmodelingis performedbytheTextRep(for "textrepresentation"class
hierarchy.A baseclass,calledTextRep,providesanAPI for retrievingtextualinformationfrom
themodel. TextRepitself is an"abstractbaseclass"whichcanneverbeinstantiateddirectly.
Instead,oneof its subclassesis alwaysinstantiatedwheneveramodelfor text is required.

Therearetwo TextRepsubclassesprovidedby UltraSonix. Thefirst is calledProtoTextRep.
ProtoTextRepis aTextRepspecializedfor capturinginformationfrom theX protocolstream.
ProtoTextRepsareusedasa "lastchance"mechanismfor capturingtextbeingdrawnto awindow.

ThesecondTextRepsubclassiscalledXmTextRep.XmTextRepis specializedfor representing
textwithin aMotif XmTextwidget(which isperhapsthemostcommonwidgetfor textdisplayin a
Motif or CDEdesktopenvironment).TheMotif textwidgetprovidesmechanismsfor retrieving
textwhicharemorerobustandmorepowerfulthansimpleX protocolmonitoring;XmTextRepis
usedwheneveraTextRepis neededfor a Motif textwidget;ProtoTextRepsareusedin othercases.

5.3HowUltraSonixCreatesTextReps

Textmaybedrawnto anywidgetin agraphicalapplication:pushbuttons,labels,multi-linetext
widgets,single-linetext fields,andsoon. UltraSonixwill only createaTextRepfor widgetsfor
whichthe"allowTextMode"attributeissetto TRUE(thisattributemaybeeithersetfor aparticular
widgetviaanobjecttemplateor, morecommonly,for anentireclassof widgetsviaaclass
template).

NotethatUltraSonix"textmode"isonly availablefor objectswhichhaveaTextRepassociated
with them.Thecreationandmaintenanceof TextRepsdoesaddoverheadto thesystematrun-time
however. Theyshouldonly becreatedfor objectsfor whichtheusermayhaveaneedfor rich
textualinteractionandscreen-readerfunctionality.

As theUltraSonixoff-screenmodelis beingupdatedviaRAPmessageswhichindicatethecreation
of widgetsin theapplication,UltraSonixchecksthenameandclassof thewidgetto seeif theuser
hasindicatedthattheobjectshouldsupporttextmode. If thereis suchanindication,UltraSonix
createstheappropriateTextRepsubclass(XmTextRepsfor XmTextwidgets,andProtoTextReps
for all otherwidgetclasses).

NOTE: In thefuturewemaysupporttheability to specificallyindicatevia templateattributes
whichTextRepsubclassshouldbecreatedfor particularobjects.

5.4TextRepBasics

TheTextRepclassesprovidearow-columnorientedmodelof text. Text is storedin lines
consistingof anumberof characters.Somelinesmaybeblank.

Segmentsof textwithin aTextReparerepresentedby TextDataobjects. TextData objects store a
string of text, the attributes associated with the characters in that string, and the length of the string.
Attributes are stored in a class called TextAttr. See the section "Support Classes" below for more
details.

NOTE: current versions of the TextData objects do not support "wide" (16-bit) characters; only 8-
bit.

5.5 The TextRep Programming Model

The TextRep classes provide only a storage model for the textual data which is *currently* present
within a window on the display. TextReps provide no user-oriented output abstractions (such as
filtering or "read by line" capabilities). The user interface to the data stored in a TextRep is created
by a ScreenReader instance which provides functions for the tokenization, retrieval, filtering, and
presentation of the text stored in a TextRep.

Note that separating the storage of text (in the TextRep class) from the presentation of the text (via
the ScreenReader class) allows us to keep the interface code (and in fact, the rest of the UltraSonix
system) the same, even if new TextRep classes are available in the future. New subclasses of
TextRep will support the common TextRep API and will thus "fit in" with the rest of the system
without modification.

The basic TextRep programming model only provides functions for text retrieval from the model.
This is because the facilities for inputting text into the TextRep will vary from subclass to subclass
(for instance, ProtoTextReps fill their models via protocol monitoring; XmTextReps fill their
models via tracking resource updates).

The basic text retrieval functions are:

TextData
TextData
TextData

*GetData0 const
GetLine(int linenum) const

GetSegment(int linenum, int start, int size) const

All three APIs return TextData objects. The first returns all of the data in a particular text object as
an array of TextData instances. (The length of this array may be determined via the Rows()
method on the TextRep). tThe second function returns all of the text in a particular line (the line
numbering starts at zero). The third returns a segment of text beginning at the specified line
number and character within that line, and extends for 'size' characters (the actual number of

characters returned may be less, if you ask for more text than is available in the TextRep).

Other APIs are available to convert from the character coordinate system to pixel coordinates, and
for retrieving the position of the application's cursor (when supported):

virtual int
virtual void

GetPixelCoords(int line, int pos, int& x, int& y);
GetAppCursor(int& row, int& col);

5.6ProtoTextRep

TheProtoTextRepis asubclassof TextRepwhichmaintainsits modelof textby monitoringthe
low-levelX protocoltraffic for renderingtexton thescreen.Thefollowing arethetext-related
requestsin theX protocolwhicharemonitoredby ProtoTextReps:

ImageText8
ImageText16
PolyText8
PolyText16
ClearArea
CopyArea

WhenaProtoTextRepiscreatedfor aparticularobject,it retrievestheRAPobjectfor theclient
applicationthattheobjectisapartof. If thenewProtoTextRepis thefirst ProtoTextRepin this
particularclient,thenit callstheRAPobjectto solicitthesetext-relatedrequestsfrom theclient
application.Theyarenotsolicitedby defaultsincetheyaddsignificantlytotheoverheadof the
system;theyareonly requestedwhenthefirst ProtoTextRepiscreatedfor agivenapplication.
Oncesolicited,all text-relatedrequestsgeneratedbytheapplicationwill besentto UltraSonix--
evenonesfor windowswhichdonothaveTextReps associated with them (push buttons for
instance).

Note that requests related to GCs (Graphics Contexts) are used primarily for ProtoTextReps, but
they are solicited whenever UltraSonix first connects to an application. GC-related traffic is
generally low, and this information could be used in the future for tasks unrelated to ProtoTextRep
modeling.

Internally, ProtoTextReps store text as an array of pointers to Line instances. Each Line maintains
a TextData instance which represents the text in that line on the screen, the baseline (lower left
comer) X and Y position where the text starts, and the upper Y coordinate which represents the
upper edge of the bounding box around the line.

Whenever new text is drawn, the baseline Y position is determined and the array of Lines is
scanned. If the baseline Y position is equal to an existing line, then the new data is considered an
update of the existing line and the new data is merged in.

!

Otherwise, the baseline Y and upper Y positions of existing lines are checked. The ProtoTextRep
does not support overlapping text, so if the new text is being drawn "over the top" of existing text,
an error is reported. Otherwise, a new Line instance is created and inserted into the model.

One of the most difficult tasks of modeling text via protocol monitoring is determination of blank
lines. In an effort to conserve network bandwidth, some applications will not transmit a "draw
blanks" message to render nothing on the screen. This causes difficulty in determining whether a
given region on the screen is a blank line, or whether lines are simply widely spaces.

For example, consider two lines of text, each with a height of 8 pixels. Suppose these lines are
separated by 40 pixels of "blank space." The ProtoTextRep must decide whether these 40 pixels
represent empty lines that the user would be able to navigate to (and if so how many), or whether
this space represents non-navigable interline spacing.

The algorithm for blank line determination used by the ProtoTextRep is this: the ProtoTextRep
maintains information about the current minimum interline spacing in use in the model. Each time
a new line is inserted into the model, the minimum interline spacing in effect is recalculated. Each
time the minimum interline spacing decreases, the text model is recalculated and blank lines are

[] m

inserted into the model between existing lines. The model interprets the decrease in minimum
interline spacing (that is, text is being drawn between two previously existing lines) as an
indication that its current supposition about interline spacing was wrong. It "renumbers" the lines
based on the new information, inserting blank lines as necessary.

Note that there are a number of limitations with the algorithms used by ProtoTextRep:

• Only fixed-width fonts are supported. If font width changes
were supported, reliable determination of column information
in the presence of blanks would be very difficult.

• Font changes are supported as long as widths never change.
• Overlapping text is not supported.
• Only the text currently visible on the screen is reliably

modeled.

The ProtoTextRep class models the location of the application cursor by tracking the
X PolyFillRectangle request to look for "block cursor" drawing in the text area.

5.7 XmTextRep

(NOTE: XmTextRep is not implemented.)

5.8 Support Classes

Several classes are used by TextReps which are exposed to users of the class. The most important
of these is TextData, which encapsulates a segment of text and the attributes of that text.

Textual attributes (color, font, etc.) are represented by TextAttr objects. These are stored within
TextData instances and are accessible through them.

Visual debugging of TextReps is supported via the TextRepDebug class. Associating an instance
of TextRepDebug with any TextRep provides a visual indication of what the TextRep instance
"believes" is currently in its model.

5.8.1 TextData

The TextData class provides a representation for a sized segment of textual data. Methods provide
access to the character string stored in the instance, the attributes of those characters, and the size
of the segment. Currently only 8-bit characters are supported by TextData.

Since copying and exchanging text segments is performed very often, the TextData class has been
implemented to be as efficient as possible. The class is implemented as a wrapper around a pointer
to a TextDataRep instance, which is hidden from users of TextDatas. TextDataRep maintains the
actual data of the segment and a reference count. Copying and assigning TextDatas results in a
simple pointer assignment and an update of the representation's reference count.

TextDatas implement copy-on-write semantics. Whenever the data in the class is accessed for

writing, a copy of the representation is made to prevent other TextDatas which share the
representation from having their data upated without their knowledge.

ThebasicAPIssupportedby TextDataincludethefollowing:

#

Provide non-const (writable) access to the character data

within a TextRep. These are expensive because they cause a
//copy of the text data to be performed to ensure safety.
#

operator char*()
char *Chars();
#

//Provide const (read-only) access to the character data
//within a TextRep. These are very inexpensive.
//

operator const char*() const;
const char *Chars() const;
//

//Return the TextAtr which corresponds to the given character
//position. The first version is non-const (expensive),
//while the second is const (cheap). Both of these methods
//will raise an xmsg exception if the position is out of
//bounds.
//

TextAttr& Attr(int position);
const TextAttr& Attr(int position) const;
//

//Return the length of the segment, in characters.
//

int Length() const;

For convenience, TextData instances may be freely copyied, assigned, and concatenated (via
operator+=). See the code for the full set of methods available on TextData objects.

The character arrays returned from TextData instances are guaranteed to be NULL-terminated.

5.8.2 TextAttr
/

The TextAttr class represents the attributes of a given segment of text. Currently TextAttrs are
simply wrappers around the GCValue class which encapsulated X Graphics Contexts.

No special methods are currently available for determining or comparing TextAttrs. Instead, to
perform comparisons, you must extract the GCValue from the TextAttr and use the standard X GC
operations.

5.8.3 TextRepDebug

TextRepDebug provides a visual debugging tool for TextReps. Code which uses TextReps should
never see TextRepDebug instances directly. Instead, to enable debugging of a particular TextRep,
the user calls TextRep::Debug(TRUE) to set the debugging state for that instance to TRUE.
Calling TextRep::Debug(FALSE) disables debugging; debug state can be determined via calling
TextRep::Debug0.

Whendebuggingis setto TRUE,theTextRepcreatesaninstanceof TextRepDebugandretainsa
pointerto it internally. Thereisonly oneTextRepDebugclass,regardlessof thetypeof TextRep
whichcreatedit; TextRepsubclassesinteractwithTextRepDebugviaawell-definedAPI which
allowsTextRepDebugto visuallydisplayTextRepcontentsfor anyclassof TextRep.

WhenaTextRepDebugis instantiatedit will createanewwindowon thedisplaywhichwill be
kept"in sync"with theTextRepcontents.No userinterventionisrequired.

6.0 THE SCREENREADER

6.1 Introduction

The ScreenReader object provides tokenization functionality for the textual data whose onscreen
representation is stored by the TextRep object. Each ScreenReader object (one may exist for each
area of text on the screen) contains a pointer to a TextRep object, which provides an interface to the
raw textual data displayed onscreen at a given snapshot of time.

Each ScreenReader maintains two cursor abstractions (this may be possibly expandable in the
future) as CursorRep objects. These objects are coupled to the TextRep object stored in the
ScreenReader object. The CursorRep object provides a notion of row and column access to the

raw data obtained from the TextRep, as well as absolute and relative positioning, and bounds-
checking and error-raising via exceptions. Each cursor may be queried and manipulated
independently, however, access to the cursors from outside the ScreenReader object is controlled
by the variable operation_mode, which can be set The CursorRep object serves as the interface
between the ScreenReader and TextRep objects. Using the CursorRep objects, the ScreenReader

may perform query operations on the text relative to the current cursor positions. Query operations
include next/previous word, line, etc.

The ScreenReader also contains "filter(s)", which modify the presentation of text parsed by the
ScreenReader object by either altering the information presented directly, or by altering the manner
of presentation on a particular output device or devices.

6.2 Functional Overview

The ScreenReader object provides the following functions:

• Read by character, word, line, sentence, or paragraph
• Move by character, word, line, sentence, or paragraph
• Synchronize cursors
• Perform text processing

Each function is briefly described below:

Move: the appropriate lexical unit (character, word, line, sentence, or paragraph) is read from the
current cursor position. The cursor is updated to point to an appropriate location following the
read. For example, reading a sentence would cause the cursor to be updated to the end of the
sentence after it has been read.

Read: similar to Move, as above, except that the cursor position is not altered.

Synchronize cursors: set the location of one cursor to be the same as the other.

Performtextprocessing:eachScreenReaderobjecthasanassociatedfilter objectwhichperforms
defaultprocessingon thetextitemreturnedbeforeit is returnedto theoutputdevice.

6.3ImplementationOverview

6.3.1CursorRep

The CursorRep object is serves as the interface between the TextRep and ScreenReader objects. It
provides a row/column interface to the text block represented in the TextRep, as well as
increment/decrement operations to scan forward and backward, treating the text block as a stream.
The text data in the TextRep associated with the cursor can be accessed from the current position
(sequential access), or randomly by specifying a row/column position (random access). The
CursorRep also contains a copy of the text data for the current line of data.

6.3.1.1 Terminology

Text block: The raw data stream presented by the TextRep object. Each line of screen output is
concatenated into a single string, with no delimiter characters between lines (lines are therefore
referenced positionally, based on a calculated offset from the start of the text area, rather than
semantically).

Text offset: Since each line of displayed text is assumed to be of constant length, the offset from
the start of the text block for a given character may be calculated using the formula (row x
line_length) + column. An offset as well as a row/column representation of the cursor position is
stored in the CursorRep object.

Text bound: The upper bound on the offset representation value for the CursorRep with its current
snapshot of the TextRep object, or (line_length * number of lines)- 1. The lower bound for the
offset representation is always 0. The bound values are inclusive (i.e. they themselves are legal,
but values below 0 or above the upper text bound are not). Attempts to access positions outside
the text bound will result in a thrown exception.

6.3.1.2 Overview

All of the functionality of the ScreenReader object is implemented via the CursorRep object. The
CursorRep acts as a scanning head which may advance forward or backward in the text block.
The delimiter string (see below) determines how the ScreenReader determines where word,
sentence, and paragraphboundaries occur while it reads data from the TextRep via the CursorRep.

Typically, ScreenReader functions will be invoked by keystrokes by the user, which are bound to
TCL functions defined in text.tcl. These functions then invoke the sreader0 function in Interp.cc,
which calls methods of the ScreenReader class.

6.3.2 ScreenReader

6.3.2.1 Terminology

Lexical unit: The lexical units which are parsed by the ScreenReader object include characters,
words, lines, sentences and paragraphs.

Cursor: Each ScreenReader object contains two cursors -an edit cursor and a review cursor. The
various navigation and fetch functions work with either cursor.

Delimiterstring:Charactersin thedelimiterstringdefinethesetof characterswhichserveas
delimitersfor thetextreturnedby theTextRepobject.Dueto implementation,characterswhichare
usedfrequentlyasdelimitercharactersshouldbeplacedatthefront of thisstringto improve
performance.

Forward/backward:Theforwarddirectioncorrespondsto thedirectionin whichtext isnormally
read,thatis, left to right acrossthescreen.Thus,functionswhichretrievethe "next"lexicalunit
read"forward",while functionsto retrievethe"previous"lexical unit read"backward".

6.3.2.2Overview

TheScreenReaderallowstheuserto navigatevia thecursorsandfetchcurrent,next,andprevious
lexicalunitsfrom thecurrentcursorposition. Themethodswhichprovidethis functionalityare
calledin ahierarchicalfashion. Thatis,thefunctionto parsecharactersandwordsisbasedon the
CursorRep object, the function to parse sentence-level constructs is based on the function to parse
words, and the function to parse paragraphs is based upon the function to parse sentences. The
tokenization algorithm for each lexical unit is described below:

Word: Depending on the desired direction of the scan (current lexical unit requested is treated as a
forward scan), the cursor moves backward to the start of the current word or forward to the end of
the current word. The scan then proceeds to move forward to the end of the word or backward to

the start of the word, terminating the search when the text bound or a delimiting character is
reached. The cursor is updated to point to the final character in the word for a forward scan, the
first character in the word for a backward scan.

Sentence: Words are read backwards from the current cursor position until a word ending in a
terminal character is found; this word is discarded as being part of the previous sentence to the

current one. Next, words are read forward from the current cursor position until a word ending in
a terminal character is found, however, this word is retained, since it is part of the current
sentence. The words read by this routine are stored by the procedure until the complete sentence is
found, and the results of the individual searches are concatenated together. The cursor is updated
to point to a character in the last word in the sentence for a forward scan, the first word in the sen-
tence for a backward scan.

Paragraph: Sentences are read backwards from the current cursor position until the word
immediately preceding _e first word of the current sentence differs in its row position from the
current sentence by at least two lines -this indicates the presence of a blank line between the
previous sentence and this one. Similarly, sentences are read forward from the current cursor

position until the next word past the end of the sentence differs by at least two lines. The sentences
read by this routine are stored by the procedure until the complete paragraph is found, and the
results of the individual searches are concatenated together. The cursor is updated to point to a
character in the last word of the last sentence of the paragraph for a forward scan, the first word of
the first sentence of the paragraph for a backward scan.

Data returned to the ScreenReader is encapsulated in the CursorRepData structure, which appears
as follows:

class CursorRepData {
int startx, starry, endx, endy;
TextData *tdata;

}

The start and end parameters are intended to store the row/column position of the start and end
positions for the data stored in this block (currently, this is unimplemented). The TextData
structure is defined in TextRep.cc and contains both character information as well as the text
attribute information for the data returned from the TextRep.

6.3.3 Filters

Filters are read via the parsing and lexing routines in filter.y and filter.l, which are converted into
the files filterparser.c and filterlexer.c using sed. These routines initialize the data structures which

are used to store the actions to be performed by the filters.

A filter consists of a TextFilter object, which is defined as follows:

class TextFilter {
[...]

char *name;
int active;

FilterEntryPtr *commands;
int num_commands, max_commands;

}

class FilterEntry {
[...]

mRegexp r;
int action, action_arg;
char *arg;
} *FilterEntryPtr;

Hence, each TextFilter is a named structure of num_commands FilterEntrys. If it is active, it will
be applied to data returned by the ScreenReader which uses the filter with this name.

Each FilterEntry describes a single action to be performed by the filter. The mRegexp member
describes a regular expression which will be pattern matched against the data passed into the filter.
The action, action_arg, and arg fields describe possible actions to take when this regular xpression
matches successfully. Currently, only the arg field is significant, and represents the character
string which should be used to substitute into the data string when a pattern match occurs.
However, the action code may be used to define a set of actions which may occur instead (.i.e.
switch(action) { }), using the action_arg and character as arguments to whatever functions are
desired. For example, the current parser for the filter contains rules for operations, such as
LANGUAGE, PITCH, RATE, VOLUME, or VOICE (these operations are unimplemented). A
separate action code may be defined for each operation, which can then be coded in
TextFilter: :Filter.

7.0 INTERPRETED RULES

8.0 CONFIGURATION SUBSYSTEM

UltraSonix uses a fairly complex configuration subsystem to allow users and administrators to
change the behavior of the system. There are two primary components of this system: the
configuration mechanisms and the template mechanisms. The configuration mechanisms are used

to controloverallsystemparameters;thetemplatemechanismsallowusersto specifybehaviorona
per-widget,per-class,orper-applicationbasis.

Thissectiondescribestheinternalsof the configuration and template subsystems.

8.1 The Template Files

Template files are text files that contain attribute information for different objects.

Template files are usually denotedby the .tmpl extension in their name. A template file contains
one or more template definitions, although it is customary to only have one definition per file and
to have the filename correspond to the definition name.

The following is an example of a complete template file with one definition:
(from Athena/Command.tmpl)

classTemplate Command {
navigable = TRUE
shell = FALSE
sound = "/net/hc22/selbie/dink.au"

unsafeResources = { "sensitive", "mappedWhenManaged" }
volume = 90

muffle = [PositionMuffle]
sensitive = [SensitiveProc]

mappedWhenManaged = [MapWhenMgdProc]
speakOnEnter = [AthenaLabelSpeaker]
speakOnlnfo = [AthenalnfoSpeaker]

}

The word "classTemplate" identifies the type of template that is being defined. "Command" is the
class of the object whose attributes are listed. Attribute names are listed in the left hand column
between the braces, and attribute values can be one of 4 data types - boolean, integer, string, or

stringlist.

In this example, the navi,gable and shell attributes are both boolean attributes, thus their values are
defined on the right hand side of the assignment statement to be either TRUE or FALSE.

Sound is an attribute of type string, therefore it's value is enclosed withing double quotes ("") to

identify it as such.

Volume is an attribute of type integer. It's value can be any number between -(2^31) to +(2^31-

1).

UnsafeResources is of type string list, and is enclosed in braces.

The other attributes listed below are all defined by a name enclosed within brackets ([]). These
attributes all have valid data types, but are defined by a TCL procedure. (The TCL procedure is the
name in brackets). Whenenver the value of one of these attributes is required, the named TCL

procedure will be evaluated at run time to return the result.

The above attributes are all members of a standard set of attributes that can be defined in any class

or object template definition.

II Illll

There are three different types of template definitions. "objectTemplate" definitions refer to a
specific object in a specific program. For example, if a template is defines a "objectTemplate
XMailTool.Command { ..." it refers to a particular Command Button widget in the XMailTool
application.

If the definition is listed as "classTemplate Command {..." then the attributes of the definition refer
to any Command Buttons that are not superseded by an object tempalte definition.

Both class and object templates support the same set of attributes; they merely provide two
different mechanisms for associating those attributes with objects.

A third type of template definition is that of an "appTemplate," which allows the configuration of
per-application attributes. Application templates support a different set of attributes than
class/object templates.

When UltraSonix starts, it retrieves the list of directories containing template files from its
configuration file, and loads all files ending in the ".tmpl" extension in those directories. These
files are parsed into an internal (in-memory) format, which is stored as a dictionary of objects of
class Template.

8.2 Defaults and General Configuration File

UltraSonix may be run on different machines with different configurations. Thus, a file exists for
the user to specify default variables for different parts of the system. The file, "mercator.config" is
used for assignment of various variables as well as to contain fallback values for undefined
template attributes.

If at any time, UltraSonix needs the attribute value for a particular object, it performs the attribute
look up in the following order:

1) If a template exists for the object's specific name, and the attribute is defined, then return the
value (calling a TCL procedure, if the attribute has been specified that way).

2) If an object template does not exist, or if the attribute was not defined in the object template,
then UltraSonix checks to see if a template exists for the class that the object belongs to. If a
class template exists, _nd the attribute is defined, then return the value. (Again, calling the
TCL procedure, if necessary).

3) As the final fallback, UltraSonix will look in the file "mercator.config" for attribute values not
defined in a Template file. Default attribute assigments in this file may also be TCL
procedures. If a value for a standard attribute is not given here, UltraSonix will not start--the
user *must* provide fallback values for all template attributes in use.

Thefollowing is asampleportionof themercator.configfile. Theformatof thefile is aseriesof
assignmentstatementswith thevariablenameon theleft, followedby anequalssign,followedby
theassignmentvalue: (verysimilarto thelinesof atemplatefile)

###

Default values for class templates
###

defaultClassNavigable = TRUE
defaultClassShell = TRUE
defaultClassAllowTextMode = FALSE
defaultClassSound = "/net/hc22/selbie/ezek2517.au"

defaultClassSpeakOnEnter =
defaultClassSpeakOnlnfo =
defaultClassLooped = [fooProcedure]

8.3 Declaring New Attributes with mercator.attrib

A file exists that allows the user to "declare" new attribute variables by specifying an identifier
name for the template files, an identifier name for the mercator.config file, its data type, and the
type of templates the attribute will be valid on. This ability is very handy advance customization--
the ability to add new template features--without having to recompile UltraSonix.

The format of the "mercator.attrib" file is a series of lines with four fields. Each line represents
one declaration. The following is a sample portion of the file that declares some of the "standard"
attributes.

UltraSonix Attribute definition file
#
NAME TYPE CONFIG FILE NAME TEMPLATE TYPE
,#_, ,,,_-##_,,_, ,_, _###########_,_,_ _4_'.-_;, .S-_d #,,,_, #,-'_######

navigable BOOLEAN defaultClassNavigable CLASS
volume INTEGER defaultClassVolume CLASS

speakOnEnter STRING defaultClassSpeakOnEnter CLASS
foo INTEGER defaultAppFoo APP
bar STRINGLtST defaultClassBar CLASS

The first identifier on each line is the name of the attribute identifier as it will appear in the template
definition files.

The second field is the data type of this identifier. Valid types are BOOLEAN, INTEGER,
STRING, or STRINGLIST.

The third field represents the name of the identifier in the mercator.config file. The differentiation
between the template attribute name and the config file name allows the user to have separate
default values for both class/object and application attributes. Notice that the identifier "foo" is
defined to be used in both Class/Object and Application templates, but has separate identifiers in
mercator.config.

The fourth field may either be CLASS or APP to indicate what type of template the declared
attribute is to be used with. CLASS indicates that it will be use in either object or class templates

(objectandclasstemplates always have the same attributes). APP indicates that it will be used in
Application templates.

Thus to declare a new attribute, an entry in "mercator.attrib" must be added as well as a
corresponding entry in "mercator.config". Undefined (ala bad) events may occur is an attribute
does not have a fallback definition in or procedure in mercator.config. (disallow this in later work)

After these entries are added, UltraSonix needs to be restarted for these changes to take effect.

To be added: Facility to resource all template and configuration files during run time. Thus, a
restart for changes to take effect won't be necessary.

8.4 Adding New UltraSonix Configuration Variables

If at any time a programmer maintaining UltraSonix needs to create a new user-definable varialble
that will be referenced throughout the system, he or she only needs to add an entry in the
Configuration (mercator.config) file.

For example, suppose a driver for a new Braille terminal is written. The driver is a shared object
file called "MyBraille.so". The shared object may need other parameters passed to it when it is
loaded: the name of a braille server to start, or some additional configuration variables for
example.

UltraSonix will parse and store *any* entries in the configuration file that it encounters. So no
additional programming is needed to support parsing of new configuration attributes; simply add
the new attributes to the configuration file:

myBrailleServer = "/my/home/dir/server"
myBrailleColumns = 80

8.5 Accessing Attributes Programmatically

Developers have both C++ and TCL interfaces to retrieving attributes from the configuration and
template subsystems. The example below shows how to retrieve data from the configuration file
for the "MyBraille" examl_les above.

Inside MyBraille.so, the programmer must include "Config.h" to access this new attribute.

The easiest way to access the attribute is via the "direct" APIs which assume the type of the
attribute:

char *brailleServer -- Config::GetString("myBrailleServer");
int brailleColumns = Config::Getlnteger("myBrailleColumns");

(There are similar APIs for retrieving boolean and sia-ing list data.)

These routines have undefined return values if the attribute does not exist or if its type does not

match the "expected" type. A safer way to fetch the data is to return it into a FieldData instance,
like this:

FieldData *data = Config::GetDefaultByName("myBrailleServer");
char *brailleServer;

if (data&& (data->Tag=- STRING))
brailleServer= data->StringO;

else
//...do some error reporting...

FieldData is a special class that is used to represent the values of configuruation or template
attributes; it may represent data in any of the supported types. The GetDefaultByName0 API will
return a NULL FieldData pointer if the attribute does not exist. After the pointer has been returned,
callers can determine the type of the value as it exists in the configuration file.

FieldData instances are used by both the Config and the Template subsystems, and thus the APIs
used to access attributes are the same for both.

8.6 Writing Templates to Files

An interpreter command and function are in place to allow for the possibiblity of interactive
customization.

The interpreter command is called "writeout" and it is binded to the function "WriteOut" which is
defined in Interp.cc. It can be called from TCL as well.

"writeout" has the following syntax:

writeout object-name filename [dictionary]

object-name is the name of the Template object (e.g. XmLabelGadet)

filename is the fully-qualified file name of where the output is to be placed

dictionary is an optional parameter to specify which Template dictionary to search for attributes for.
By default all dictionaries are searched until a matching object-name is found. They are searched in
the following order: Object-Templates, Class-Templates, and App-Templates.

Caveats:
g

• "WriteOut" is a friend function of the Template Class. This is to
facilitate access to the private dictionaries. Most of this code

• should be made as a method of the Template Class.

8.7 Re-Sourcing of Template and Configuration files

Four commands have been added to the Interpreter code (Interp.cc) to support reloading of

configuration and template information.

"loadattributes" - reloads mercator.attrib

"loadconfig" - reloads mercator.config

"loadtemplates" - reloads all the template files

"loadall" - calls the above three commands in the above order

The corresponding function names that these commands bind have the same name.

9.0 DEVICE-SPECIFIC CODE

9.1 Motivation

UltraSonix "hides" the details of low-level input/output processing to make the system as portable
and flexible as possible. All device-specific gO code is externalized out of the "core" part of the
system. I/O code is dynamically loaded at runtime as it is needed.

To ensure that "foreign" code will operate as expected with UltraSonix, the system requires that all
loadable code conform to one of a set of "base class" APIs that define how different I/O devices

will appear to the rest of the system.

By writing loadable I/O code that conforms to one of the pre-defined base classes, arbitrary device-
specific code can be loaded into UltraSonix at runtime and can interoperate with the rest of the
software, without the need for any changes. All existing C++ and TCL code can use the new
device-specific code without even being aware of what devices it is interacting with.

This section details the loadable I/O strategy used by UltraSonix, and describes how to create new
device-specific code.

9.2 Loadable Base Classes

As mentioned, all device-specific code must conform to the API specified by one of the "loadable
base classes." The loadable base classes are C++ classes the enforce particular APIs for different
categories of devices, currently non-speech audio, speech synthesis, and braille.

When writing new device support, developers should chose the existing loadable base class that
most closely approximates the new device they are adding support for. They must provide device-
specific implementations for all of the functions in the particular base class they are deriving their
code from.

The following sections detail the APIs provided by the various loadable base classes.

9.2.1 The Audio GeneridAPI

The generic audio API is defined in Audio.h. Note that the API is subject to change as new needs
are identified.

The Audio superclass defines the type Audio::SoundID which can be used to refer to playing or
loaded sounds. Two methods should be implemented by derived classes:

SoundID PlaySound(const char *sound_file, float *rate, int volume,
int muffle, int looped);

PlaySound plays the specified sound file with the given
parameters. It returns a unique ID for the playing sound.

int StopSound(SoundlD sound_id);

StopSound halts the play of the specified sound ID.

int StopAllSounds0;

Haltsall soundscurrentlybeingplayed.

9.2.2TheSpeechGenericAPI

The generic speech API is defined in Speech.h. Note that the API is subject to change as new
needs are identified.

The following methods should be implemented by derived classes. All should return 0 on failure
and 1 on success.

int Speak(const char *text);

Speak the specified string of text.

int SpeakUnix(const char *text);

Speak the specified string of text, performing some common UNIX
translations (for pathnames, and so on).

int Notify(const char *text);

Reserved for future use.

int SetSpeechRate(int new_rate);

Change the speech rate to the specified value.

int StopSpeaking0;

Halt the speech synthesizer.

int SetVoice(const char *voice_code);

Change to a voice specified the provided voice code string (this will
probably be implementation dependent). The voice name must be one
of the supported voices for this particular hardware.

int SetLanguage(const char *lang);

Change the current language. The new language must be one of the
ones supported by the hardware.

int SetGain(int newGain);

Change the output volume of the speech synthesizer.

int SetDictionary(const char *word, const char *pronunciation);

Install a synthesizer-specific pronuncation in the dictionary.

int UnSetDictionary(constchar*word, constchar*pronunciation);

Removeasynthesizer-specificpronuncationfrom thedictionary.

Capabilities&GetCapabilities0;

Returnanobjectcontainingthecapabilitiesof thisparticular
speechsynthesizer:languagesandvoicesthataresupported,
minimumandmaximumrate,andwhethersoftwaregaincontrolis
supported.

9.2.3TheBrailleGenericAPI

TheBraillegenericAPI is definedin Braille.h. NotethattheBraillebaseclassisderivedfrom
FDInterest,asmanybraille terminalsarealsoinputdevices.Thus,anysubclassesof Braillemust
implementtheproperFDInterestprotocols,asdescribedin thesectiononHandlingInput.

voidDisplayRaw(constchar*text, int rawPosition= 0);

Displaythespecifiedtexton thebrailledevice,atthespecified
position. TheDisplayRaw0routinetreatsall statusand"normal"
displaycellsthesame:textwill thecrossstatus/normalcell
boundary;positionisrelativeto thefirst physicalcell onthe
display.

voidDisplayBraille(constchar*text,int position= 0);

Displaythespecifiedtextin the"normal"displayareaof the
brailleterminal,atthespecifiedposition. If thetextexceeds
thenumberof displaycells,it will beclipped.

voidDisplayStatus(constchar*text);

Displaythespecifiedtext in thestatusareaof thebraille
display. If thetextexceedsthenumberof statuscells,it will
beclipped.

intJumpScroll0;

Returnthecurrentjump scrollenablestatus(TRUEor FALSE).

void JumpScroll(intjumpScroll);

Setthejump scroll status(TRUEor FALSE)I

void ToggleSumpScroll0;

Invertthecurrentjump scroll status.

void SetText(constchar*text[], int numRows);

Downloadanarrayof text linesinto thebrailledisplay.The

loadableobjectshouldimplementscrollingthroughthedownloaded
lines.

voidTranslation(constunsignedchar*translation);

Setthetranslations(byteconversions)thatwill beusedby the
loadableobject.

constunsignedchar*Translation();

Returnthetranslationmapcurrentlyinuse.

Capabilities&GetCapabilities0;

Returnanobjectcontainingthecapabilitiesof thisparticular
brailleharware:numberof displayandstatuscells,presenceor
absenceof particularkeys,etc.

9.3Writing New Loadables

Thisguideprovidesaquickoverviewof writing loadableI/O modulesfor usewith theUltraSonix
software. It assumessomefamiliarity with C++andscreenreaderterminology.

9.3.1BasicConcepts

Thefundamentalgoalwith theloadablemodulesupportin UltraSonixis to provideamechanismto
separatedevice-specificcodefrom thecoreof thescreenreadersystem.Devicespecificcodecan
becompiledinto "dynamicallyloadable"modules(alsocalled"sharedobjectfiles") whicharethen
loadedintoUltraSonixatrun-time.Run-timeor "dynamicloading"makesit possiblefor
UltraSonixto useI/O deviceswhichwerenotavailableatthetimethesystemwaswritten.

Theinternalsof UltraSonixarewrittento use"abstract"interfacesto thevariousI/O deviceswhich
maybepresentonauser'sworkstation.For example,UltraSonixis written to usea genericAudio
objectandagenericSpeechobject.Thesegenericobjectsenforceaparticularinterfacefor that
UltraSonixrelieson. Thefunctions,or "methods,"providedby theseobjectsspecifytheinterface
betweenUltraSonixandthedevice.

Thesegenericobjectsdonotprovideanyfunctionalityby themselves.Instead,theysimply
provideaprogramminginterfacewhichcanbeusedby therestof theUltraSonixsystem.

At runtime,subclassesof thesegenericclassesthathavebeencompiledasdynamicallyloadable
modulesareloadedinto thesystem.Eachof thesesubclassesprovidesthesameAPIsastheir
geneticsuperclasses,buttheyalsoprovideanactualimplementationfor interactingwith a
particulardevice.

As anexample,theremayexistseveralsubclassesof theSpeechgeneticclassimplementedas
dynamicmodules:Dectalk, TrueVoice, and so on. When UltraSonix is run, one of these modules
(as determined by the configuration file) will be dynamically loaded into the system and used in the
place of the generic Speech object. Since the subclass has the same API as its generic superclass,
everything works correctly.

II_ _ ,,_

9.3.2Writing aLoadableModule

Thefirst thingyoumustdowhenwritinga loadablemoduleisdecidewhichgenericsuperclass
youwish to baseyourmoduleon. Youmustuseoneof thesuperclassesthat arealreadyknownto
UltraSonix. Currentlythereareonly two: SpeechandAudio. Thecoreof UltraSonixhasbeen
writtento usethesemodules.Introducingnewgenericsuperclassesinvolvesrestructuringthe
UltraSonixI/O systemsothatit candecidewhento usethenewmodule.

If youwishyourloadablemoduleto "actlike" anaudiodevice,youmustderivefrom theAudio
genericsuperclass.Likewisefor theSpeechsuperclass.Yourmodulemustimplementthe
methodsdefinedby thesesuperclassesfor it to work properlywith UltraSonix. Seethesecions
belowon theparticularsof thegenericAPIsfor theAudio andSpeechsuperclasses.

Onceyou'vedecidedwhichsuperclassto use,youcreateaC++classderivedfrom thatsuperclass.
In theexample,supposewehaveasuperclasscalledSuperdeclaredasfollows:

classSuper{
public:

Super(); //constructor
virtual -Super(); //destructor

//

//Subclasses must implement DoSomething to behave
//like a Super.
//

virtual int DoSomething0;
};

To create your loadable subclass (we'll call it Sub), create a file Sub.h that contains the declaration
of Sub, and a file Sub.cc that contains the implementation of Sub.

In Sub.h, provide (at least) the following:

#include "Super.h"
#include "Loadable.h"

class Sub" public' Super {

public:
Sub();
-Sub();
int DoSomething0;

};

Note the #include of the file Loadable.h. This file contains the definition of a macro

LOADABLE_CLASS_DEFN that performs some of the "boilerplate" required work that loadable
modules must implement.

Also note that you must provide a "default" (parameterless) construztor for the class.

Now in Sub.cc, you provide implementations of the methods declared in the .h file:

#include "Sub.h"

LOADABLE_CLASS_DEFN(Sub);

Sub::SubO
Sub::-SubO

{/* ...constructorcodegoeshere... */}
{/* ...destructorcodegoeshere... */}

int
Sub::DoSomething0 {/* ... DoSomethingimpl ... */}

Notethecall to LOADABLE_CLASS_DEFN.This is amacrowhich isprovidedin the
Loadable.hheaderfile. YouMUSTplacethismacroin the.ccfile for yourclassto function
properlyasaloadablemoduleinUltraSonix.Theargumentto themacrois simplythenameof the
classyouarecreating.

ThismacrosimplycreatesafunctioncalledNewSubwhichcallsthedefault(parameterless)
constructoron theSubclass.UltraSonixreliesonthis functionto bootstraptheloadingprocess.

To summarizetherequirementsfor writing aloadablemodule:

• Chooseanalready-existingsuperclassto baseyourworkon.
• IncludetheLoadables.hheaderfile.
• Makesureyouprovideadefaultconstructor.
• Makesureyouprovideimplementationsfor all of the
methodsrequiredby thesuperclass.

• MakesureyoucalltheLOADABLE_CLASS_DEFNmacroto
automaticallygeneratetheboilerplatecodeneededby
UltraSonix.

9.3.3CompilingaLoadableModule

Thedetailsfor howto compilea loadablemodulewill varyfrom platformto platformandfrom
compilerto compiler. Theguidelinesbelowarefor theSunSPARCcompilerC++, version4.0.1.
Therearesomegeneralruleswhichwill applyto anycompilerhowever.

First,compilethe.ccfiles into .ofiles. You mustspecifyflagsto generatepositionindependent
code(PIC). On theSuncompilers,theflagsto useare-G and-K pic:

CC -G -K pic -c Su'b.cc

This will createthefile Sub.o.Next,youmustcompilethe .ofiles intoasharedobject(.so)file.
Notethatif your loadablemoduledependsonanyothersharedlibrariesyouMUST passtheseon
thelink line via -1. If theyarepresentonthelink line, thentheSolarisruntime loader will know to
load them at the same time it loads your module. Without the libraries you will get undefined
symbols at runtime. Also note that if any of these libraries are shared libraries, and they reside in a
place other than/usr/lib, you will need to provide a "library run path" via the -R option. This path
specifies directories in which the runtime linker will search for the libraries you need.

Link as follows:

CC -G -K pic -o Sub.so Sub.o -L/your/dir -R/your/dir -lyourlib

UltraSonix follows the convention that the filename of the resultant .so module MUST be the same

as the class defined in that file (and the same as the name passed to LOADABLE_CLASS_DEFN).
Since only the filename of the shared object module is specified in the configuration file,
UltraSonix uses the filename to derive the name of the class defined in that file.

9.3.4Configuration

Certainloadablemodulesmayrequirethespecificationof user-customizableparametersto operate
effectively.Forexample,theDectalkloadablemodulerequiresinformationabouthowto startthe
dectalkdspeechserver.

We encouragewritersof loadablemodulesto usethestandardconfigurationfile subsystemto
specifyuser-suppliedparameters.Any loadablecodecanretrieveattributesfrom theconfiguration
file via theConfig interfacesdefinedin Config.h. By keepingall customizationinformationinone
configurationfile (ratherthanamultitudeof device-specificconfigurationfiles),maintenanceand
administrationshouldbemadeeasier.

9.4ExistingLoadableModules

ThissectiondescribestheloadableI/O modulescurrentlyshippedwith UltraSonix: how to use
thesemodules,andhowtheyareimplemented.

Thecurrentlyavailablemodulesare:

Dectalk
DectalkX
TrueTalk

NetAudio
AudioFile
Alva
Genovations

DECtalk DTC01 Speech Synthesizer

DECtalk Express Speech Synthesizer
Entropic TrueTalk Software-Based Speech
Synthesizer
Georgia Tech NetAudio audio server protocol
Digital AudioFile audio server protocol
HumanWare ALVA 3-20 and 3-80 Braille terminals

Genovations external keypad

9.4.1 Dectalk

9.4.1.1 Using the Dectalk Speech Synthesizer with UltraSonix

UltraSonix supports the D)ectalk speech synthesizer. To use Dectalk with UltraSonix, connect the
speech synthesizer as specified by the user's manual and start the Dectalk host daemon, dectalkd,
on the same host, which is specified by the environment variable DECTALKHOST. After these
steps change the line starting with "speechLoadable" in the configuration file to:

speechLoadable = "Dectalk"

This will tell UltraSonix to look for the loadable object named Dectalk.so in one of the directories

specified by the loadableSearchPath variable in the configuration file.

When UltraSonix is executed it will load Dectalk.so automatically and the user should be able to

hear speech output from the Dectalk.

9.4.1.2 Check List

If there is no speech output when UltraSonix starts up, make sure the following have been carried
out:

I

a. Connect the Dectalk to the host which will be running the dectalk daemon.

b. Start the daemon dectalkd on the above host.

c. On the user's host, set the environment variable DECTALKHOST to the name of the

machine used in a. and b. (This step is not necessary if the Dectalk is connected to the same
machine UltraSonix will run on.)

d. Set the speechLoadable variable in UltraSonix's config file to "Dectalk".

e. Set the loadableSearchPath variable in UltraSonix's config file to contain the directory

where the Dectalk loadable object, Dectalk.so is stored.

9.4.1.3 Implementation Details

Dectalk.so is implemented as a subclass of the generic Speech object. It contains the set of api's
which is specified by the Speech object's public virtual functions. The constructor Dectalk::Dectalk
takes the name of the host as its parameter and opens a socket connection to the daemon running on
that host. The SetVoice function takes the following one character voice parameters:

p = standard male voice
b - standard female voice

h = deep male voice
f = older male voice
k = child's voice

r = deep female voice
u = light female voice
d - whispery male voice
w = whispery female voice

The argument to the SetSpeechRate function is the number of words spoken per minute on the
average. The Speak function takes a string of text to be spoken. There may be additional
functionalities which are specific to the speech synthesizer used.

9.4.1.4 Server Options

The server, dectalkd, is responsible for controlling the physical Dectalk hardware. The server can
be used with either the older Dectalk devices, or the newer Dectalk Express.

The server understands the following options:

-d
-f

-p port
-t tty

Enable socket debugging options.
Run in foreground (no daemon mode).
Use the specified IP port number.
Use the specified tty device.

By default, the server uses port 1330 and device/devlttyb. When started from UltraSonix, the
server should be run with the -f option so that it can be reliably shut down when UltraSonix exits.

9.4.2 DectalkX

9.4.2.1UsingtheDectalkExpressSpeechSynthesizerwith UltraSonix

UltraSonixsupportstheDectalkExpressspeechsynthesizer.To useDectalkExpresswith
UltraSonix,connectthespeechsynthesizerasspecifiedby theuser'smanualandstartthedectalk
hostdaemon,dectalkd,on thesamehostasspecifiedby theenvironmentvariable
DECTALKHOST.After thesestepschangethelinestartingwith "speechLoadable"in the
configurationfile to:

speechLoadable = "DectalkX"

Thiswill tell UltraSonixto lookfor theloadableobjectnamedDectalkX.soin oneof thedirectories
specifiedby theloadableSearchPathvariablein theconfigurationfile.

WhenUltraSonixisexecutedit will loadDectalkX.soautomaticallyandtheusershouldbeableto
hearspeechoutputfromtheDectalkExpress.

9.4.2.2CheckList

If thereis nospeechoutputwhenUltraSonixstartsup,makesurethefollowing havebeencarried
out:

a.ConnecttheDectalkExpressto thehostwhichwill berunningthedectalkdaemon.

b. Startthedaemondectalkdon theabovehost.

c. Ontheuser'shost,settheenvironmentvariableDECTALKHOSTto thenameof the
machineusedin a.andb. (Thisstepis notnecessaryif theDectalkisconnectedto thesame
machineUltraSonixwill runon.)

d. SetthespeechLoadablevariablein UltraSonix'sconfigfile to "DectalkX".

e. Setthe loadableSearchPathvariablein UltraSonix'sconfigfile to containthedirectory
wheretheDectalkExpressloadableobject,DectalkX.sois stored.

9.4.2.3ImplementationDetails

DectalkX.sois verysimilar toDectalk.so.Theonly modificationwemadewasin thecontrol
charactersusedto implementtheSetVoice,SetSpeechRate,andStopSpeakingfunctions.(It should
benotedthattheStopSpeakingfunctionusesanundocumentedDectalkExpresscommand:it
simplysendsacontrol-ccharacter(ascii3) to theDectalkExpress.This isequivalentto the[:flush
all] commanddescribedin themanual.Weusedtheundocumentedcommandbecausethe[:flush
all] commanddid notseemto work onoursystems.)

9.4.2.4ServerOptions

Theserver,dectalkd,is responsiblefor controllingthephysicalDectalkXhardware.Theserver
canbeusedwitheithertheolderDectalkdevices,or thenewerDectalkExpress.

Theserverunderstandsthefollowing options:

-d
-f
-pport
-t tty

Enablesocketdebuggingoptions.
Runin foreground(nodaemonmode).
UsethespecifiedIPportnumber.
Usethespecifiedtty device.

By default,theserverusesport 1330anddevice/dev/ttyb.Whenstartedfrom UltraSonix,the
servershouldbe runwith the-f optionsothatit canbereliably shutdownwhenUltraSonixexits.

9.4.3TrueTalk

9.4.3.1UsingtheEntropicTrueTalkSpeechSynthesizerwith UltraSonix

UltraSonixsupportsEntropic'ssoftwarespeechsynthesizer,TrueTalk.To useTrueTalkwith
UltraSonix,thelicenseserverandTrueTalkservermustbesetupasdescribedin theTrueTalk
User'sManual.After thesestepsaredonechangetheline startingwith speechLoadablein the
configurationfile to:

speechLoadable = "Truetalk"

Thiswill tellUltraSonixto look for the loadableobjectnamedTruetalk.soinoneof thedirectories
specifiedbytheloadableSearchPathvariablein theconfigurationfile.

If theTrueTalklicenseserverandtheTrueTalkspeechserverareupandrunning,andtheTruetalk
loadableobjectisunderoneof thedirectoriesspecifiedby theloadableSearchPath,UltraSonixwill
loadTruetalk.soautomaticallywhenit is runandtheusershouldbeableto hearspeechoutput
from UltraSonix.

9.4.3.2CheckList

If thereis nospeechoutputwhenUltraSonixstartsup,makesurethefollowing havebeencarried
OUt:

/

a. The TrueTalk license server, elmd, is running on a host named by the user's

ELM_HOST environment variable.

b. Set the TT_BASE environment variable to the TrueTalk directory on the user's system.

c. Run the TrueTalk server.

d. Set the speechLoadable variable in UltraSonix's config file to "Truetalk".

e. Set the loadableSearchPath variable in UltraSoilix's config file to contain the directory

where the TrueTalk loadable object, Truetalk.so is stored.

f. Make sure the audio device is not busy.

m
ke

9.4.3.3 Implementation Details

Tmetalk.so is implemented in the same fashion as Dectalk.so, as a subclass of the generic Speech
object. Truetalk.so contains the set of api's which conform to ones specified by the Speech
object's public virtual functions. Currently the SetVoice and the SetSpeechRate functions follow
Dectalk's convention, where the voices are specified by a single character and the speech rate is
specified in words per minute. The voice specification currently uses these values:

p = standard male voice
b = standard female voice

h = deep male voice
f = older male voice
k = child's voice

r = deep female voice
u = light female voice
d = whispery male voice
w = whispery female voice

9.4.3.4 Compatibility Issues

Since TrueTalk is a software speech synthesizer, it will require an audio device on the user's
machine. This means that if TmeTalk is used with an audio server such as netaudio, which does

not mix more than one audio inputs the user would need to have two audio devices, which is
currently the case.

9.4.4 NetAudio

9.4.4.1 Using the NetAudio System with UltraSonix

The NetAudio.so loadable module provides support for the Georgia Tech NetAudio-2 non-speech
audio server. This server was developed at Georgia Tech specifically to support UltraSonix. Note
that it bears no releation to the NetAudio server from NCD, despite the name.

NetAudio-2 supports various filtering and signal processing operations within the server code; it
only runs on Sun SPARCstations.

For more information on NetAudio-2, see the WWW page at:
http://www.cc.gatech.edu/gvu/multimedia/NetAudio.html

To enable support for NetAudio-2, set the following attribute in the mercator.config file:

audioLoadable = "NetAudio"

The NetAudio.so loadable module will (optionally) start the NetAudio-2 server on the local
machine.

9.4.4.2 Implementation Details

When loaded, NetAudio.so will optionally attempt to start the NetAudio-2 server (netaudiod) on
the local machine. If the environment variable NETAUDIOHOST is set, NetAudio.so will attempt
to connect to netaudiod on the specified machine. If NETAUDIOHOST is not set, NetAudio.so

- IIIIIII1| ._ - I I

will retrieve the value of netaudioServer from mercator.config, and execute this command,
assuming that it will start a new netaudiod.

NetAudio.so also retrieves the value of netaudioTimeout from mercator.config. This value
specifies, in seconds, how long NetAudio.so will attempt to connect to netaudiod before it gives
up.

The methods in the genetic audio API, PlaySound, StopSound, and StopAIISounds, map directly
into the netaudiod RPC protocol.

9.4.5 AudioFile

9.4.5.1 Using AudioFile with UltraSonix

The AudioFile system is a non-speech audio server from Digital Equipment Corporation. It is
freely available on the net.

Enable AudioFile support with the following line in mercator.config:

audioServer = "AudioFile"

The AudioFile.so loadable module provides an interface to the audiofile server process that
conforms to the genetic audio API. Note that the currently implementation of AudioFile.so does
not start an audiofile server: the server must be started "by hand" before UltraSonix is run.

9.4.5.2 Implementation Details

The audiofile server does not support the filtering and signal processing applications required by
UltraSonix. Therefore, the AudioFile.so loadable module creates a "work crew" of threads to

perform signal processing within the UltraSonix process itself. Filtering is done within
UltraSonix, rather than when the NetAudio.so module is used and filtering is done within the
server.

9.4.5.3 Caveats

To use a multithreaded ("MT") loadable module, UltraSonix itself must be recompiled with the -mt
option. By default, the system as shipped is not compiled with this option. Therefore,
recompilation is necessary to use AudioFile.so.

9.4.6 Alva

(NOTE: this section is not finished.)

9.4.7 Genovations

9.4.7.1 Using the Genovations Keypad with UltraSonix

The Genovations Keypad is an external serial device with a standard set of numeric keypad
controls. This device can be used as a (limited) alternative to the "standard" workstation keyboard
typically used to navigate in UltraSonix.

To usetheGenovationsdevicewith UltraSonixstarts,insertthefollowing line into yourconfig
file:

keypadLoadable = "Genovations"

Thiswill loadtheGenovations.sosharedobjectfile into theUltraSonixprocess.

By default,UltraSonixassumesthattheGenovationskeypadis attachedto serialport labeledas
"/dev/ttya".Theusercansetanenvironmentvariable,GENOVATIONSDEV,to overridethis
setting.

Notethatthecurrentimplementationof Genovations.sodoesnotstartaserverprocess,sothe
keypadmustbeattatcheddirectlyto the localmachine.Futureversionsmaysupportremoteaccess
to thekeypad.

Besurethattherearenoprograms,services,or alternateconfigurationsthatcouldpotentiallylock
theserialport. OnecommonproblemisthatSolarisby defaultassumesthattheserialport is used
to runadumbterminal. Usethe"admintool"to turntheterminalservicesoff theserialport.

9.4.7.2ImplementationDetails

Thecurrent"bindevent"mechanismusedbyUltraSonixdoesnotallow theassociationof TCL
procedureswith userinputotherthantheX eventstream.Thus,thereisnowayvia "bindevent"to
associateaparticularpieceof TCL codewith akeypresson theGenovationskeypad.

Instead,theGenovations.socode"directly" invokescertainactionswheneverkey sequencesare
pressed.Theseactionsare"hard-wired"in theGenovationscodeandcannotbechangedwithout
recompiling.

Thecurrentmappingof keypadeventsto Actionsis:

KEY ACTION

0 StopSpeaking
1 ReadThisChar
2 DownPressed
3 ReadThisWord
4 LeftPressed
5 FivePressed

6 RightPressed
7 ReadThisSentence

8 UpPressed
9 ReadThisSentence

ChangeTextMode
enter SelCurrent

10.0 MISCELLANEOUS TOPICS

This section describes a number of miscellaneous topics that may be of interest to developers

maintaining the UltraSonix source code. This section discusses the subprocess management APIs
available within the system, and the console subsystem.

10.1ProcessManagement

This sectiondescribesthefacilitiesprovidedby UltraSonixfor managingsubprocesses.Its
primaryaudienceisprogrammersmaintainingtheinternalsof UltraSonix,or developersof
loadablemoduleswhoneedto spawnserverprocessesto manageI/O.

10.1.1Introductionto ProcessManagement

OccasionallyUltraSonixmustspawnchildprocessesto accomplishsometask. Thechief
situationswheresubprocessesarestartedaretheconsoleapplication,andanydevice-specificI/O
serverswhichmayberequiredbyyourparticularhardwareconfiguration.

Subprocessmanagementis accomplishedvia theProcessManagerclass.Thereisonly one
instanceof thisclassin UltraSonix,maintainedby theglobalMercatorinstance.To retrievethe
ProcessManagerinstanceinyourcode,do thefollowing:

//Declare the single global Mercator instance.
extem Mercator *mercator;

//Get the ProcessManager.
ProcessManager *pm = mercator->GetProcessManager0;

The ProcessManager class provides the following facilities:

• "Wrapper" functions to start, stop, and signal processes.
• "SIGCHLD handling for all subprocesses (to prevent "zombie"

processes.)
• Optional automatic shutdown of subprocesses on exit.
• Subprocess tracking.

The goal of the ProcessManager class is to provide a single point of control for all subprocess-
related operations to (1) prevent possible programmer errors, and (2) provide orderly control over
subprocess termination.,

10.1.2 Using the Process Manager: Basic

Most code will use only one method on the ProcessManager: StartProcess0. The StartProcess0

method is used to spawn a new child process. Here is the declaration of the StartProcess0
method:

pid_t StartProcess(int argc, char * const argv[],
char *const envp[] = NULL,
int killOnShutdown = TRUE,

UnexpectedDeathProc unexpected = NULL,
BeforeDeathProc before = NULL,
AfterDeathproc after = NULL);

Notethattheassignmentoperatorsin thedeclarationprovideC++"defaultparameters"to these
arguments.If theseparametersareomittedin thecall to StartProcess0thedefaultvalueswill be
used.So"simple"useof StartProcessonly requiresargcandargv.

Thefirst four parameters(argc,argv,envp,killOnShutdown)arethemostimportantfor basicuse
andaredescribedhere.Theotherparametersaredescribedunder"UsingtheProcessManager:
Advanced."

argc Argumentcount
argv Argumentvector
envp Processenvironment
killOnShutdown ShouldtheprocessbeterminatedwhenUltraSonix

is shutdown

Theargcandargvparametersarerequired.ProcessManager0examinesargv[0]to try to locatethe
executablefilename. If argv[0]containsaslashcharacter,argv[0] is treatedastheactualfilename.
If it doesnotcontainaslash,theuser'sPATH issearchedfor thespecifiedfilename. This
behaviorallowsabsolutepathnamesor PATH searchingto beemployed.

Envp isoptional. If present,it is usedasthesubprocess'senvironment;if omitted,theparent's
environmentis used.This featureis primarilyusedto allowUltraSonixto spawnsubprocesses
whicharethemselvesUltraSonixclients(thatis,theyusetheUltraSonix-modifiedX librariesto
communicateproperlywith theUltraSonixsystem).

ThekillOnShutdownparameteris abooleanwhichspecifieswhethertheProcessManagerwill
terminatethesubprocesswhenUltraSonixitselfshutsdown. Childprocessesareterminatedvia a
SIGTERMsignal.

StartProcess0returnstheprocessID of thesubprocesswhich wascreated,or -1of anerror
occurred.

10.1.3UsingtheProcessManager:Advanced

TheProcessManagerallowscallersto registerthreefunctionsthatcanbeusedto handlespecial
subprocessneeds.Theprototypesof thesehandlerfunctionsareasfollows:

typedefint (*UnexpectedDeathProc)(pid_t);
typedefint (*BeforeDeathProc)(pid_t);
typedefint (*AfterDeathProc)(pid_t);

All of theseargumentshavedefaultparametersof NULL.

TheUnexpectedDeathProc,if supplied,will becalledby ProcessManagerwhenthechildprocess
terminates"unexpectedly"(thatis, notasaresultof acall to StopProcess0or thenormalshutdown
procedure).A commonuseof thisproceduremightbeto restartanI/O daemonthathasdied.
Notethatif adaemonprocessisrestarted,anycodethatwasconnectedto thatdaemonwill haveto
reconnect.

The BeforeDeathProc and AfterDeathProc arguments, if supplied, are called before and after
(respectively) UltraSonix performs an "orderly" termination of the subprocess. These can be used
for any specific clean-up code that might need to be run when a process is halted.

In additionto StartProcess(),theProcessManagerprovidesseveralotherAPIs:

int StopProcess(pid_tpid)

Thismethodstopstheprocessspecifiedby pid via aSIGTERM
signal.Evenprocessesthatarenotstartedfrom
ProcessManagermaybestoppedusingthismethod.

int SuspendProcess(pid_tpid)
int ResumeProcess(pid_tpid)

Thesemethodsareusedio suspendandresumeprocesses
(whetherornot theywerestartedfromProcessManager)via
SIGSUSPENDandSIGRESUMEsignals.

int SignalProcess(pid_tpid, int signal)

SignalProcess0isusedto sendarbitrarysignalsto a
process.Notethatif youuseSignalProcess0to senda
SIGTERMorotherfatalsignalto aprocess,thedeathis
consideredunexpected(andhence,theUnexpectedDeathProcwill
becalledif available).Killing aprocessviaStopProcess0
providesanorderlyshutdown(andcall of BeforeDeathProcand
AfterDeathProc,if available).

ProcessManager::ProcessNode*FindProcess(pid_tpid)

FindProcess0isusedto retrieveper-processinformation
giventhepid of aprocess.Thiscallcanonly retrieve
informationfor processesstartedviaProcessManager.See
ProcessManager.hfor thetypedefinitionof ProcessNode.
Callersof this functioncanupdateinformationin aprocess's
ProcessNode,but theyarediscouragedfrom doingso,asthis
informationis usedinternallyby ProcessManager.Callers
shouldNEVERfreethedatareturnedby FindProcess0.The
methodwill returnNULL if thespecifiedprocesshasno
associatedProce,ssNode.

10.1.4ProcessManagerImplementation

ProcessManageris implementedasanFDInterestsubclass.Whenaninstanceof theclassis
intialized,it createsapipefor readingandwriting, andinstallsa signalhandler(calledReaper)to
catchSIGCHLDsignals.

TheReaperfunction,whenit detectsthatachild processhasdied,writestheprocessID andexit
statusof thechild ontothewriter endof thepipe.

Thereaderendof thepipehasbeenregisteredwith theFDInterestSUl.,erclassasan"interesting"
descriptor,soit will becomeavailablefor readingafterReaperhasrun. TheHandleActivity0
methodwill bedispatched,whichcollectstheprocessID andstatusof thechildprocess.

After requisiteerrorchecking,HandleActivity0will do thefollowing:

• Determineif theshutdownwasexpected.An "expected"shutdown
is denotedby the"flaggedForKill"booleanbeingsetto TRUEin
theprocess'sProcessNode.This flag is setto TRUEwhenever
StopProcess0is calledto terminateaprocess.

• If thedeathis unexpected,it callstheUnexpectedDeathProcfor
theprocedure,if it exists.

• If thedeathis expected,it callstheAfterDeathProcfor the
procedure,if it exists.

• TheProcessNodefor theprocessis removedfrom thedictionary
of ProcessNodes.

Thereasonfor thepipe implementationis to preventarbitrarycodeformbeingrun insidethesignal
handler.Thesignalhandlerisverysimple: it merelyhasto catchthechild exitstatusandwrite the
processID andstatusontoapipeandreturn.

Themorecomplicatedprocessingof datastructuremanipulationandcall of (perhapsarbitrary)
client-supplieddeathproceduresisrelegatedto HandleActivity0.

10.2TheConsole

10.2.1UsingtheUltraSonixConsole

UltraSonixConfiguration(/opt/GTsonicx/bin/gui-console)isaGUI basedconsolewhichallows
theuserto configuresomeof theattributesof UltraSonixinteractively.Theuserscanalsoissue
commandsin thewindowfrom whichUltraSonixConfigurationis started.(Eventuallythiswill be
incorporatedintoatextareain theconsoleitself.)Theutility currentlyallowstheuserto setthe
speechrate,speechvoiceandtheuserlevelwith togglebuttons.

10.2.2StartingaConsole

UltraSonixcanstarttheconsoleautomaticallyasachild process.WhenUltraSonixstartsit looks
for thestringlist variable"console"in theconfigfile (defaultis
/opt/GTsonicx/etc/mercator.config). The variable should contain a list of strings which form the
command to start the console. The first string in the list should be the absolute path and name of
the console program, and the rest of the list should contain any command line options to be passed
to the console.

The variable, "consoleWait", in the config file specifies how long UltraSonix will try to connect to
the console via named pipes. If the connection is not established after this time then UltraSonix
assumes that the console fails to start and it will revert back to stdin and stdout for input and
output.

10.2.3ConsoleEnvironment

TheGUI basedconsolein thepackagerequiresadifferentLD_LIBRARY_PATHenvironment
variablethenUltraSonix.Thismaybe truefor otherconsolesaswell. To accommodatethis,
UltraSonixlooksfor anotherstringlist variable"consoleEnv".Eachstringin this variableshould
bein theform:

"VAR=VALUE"

whereVAR isthenameof theenvironmentvariableandVALUE is itsvaluewhentheconsoleis
running.For example,anMotif basedconsoleapplicationswouldneedto haveits
LD_LIBRARY_PATHsetto includepathsto themodifiedR5andRAPlibraries.The value of
LD_LIBRARY PATH from the user's shell environment will be replaced with the one specified in
consoleEnv. (The user can also unset an environment variable by including the variable's name in
the consoleEnv string list without any value.)

10.2.4 Example

#4_

Set which program to run as console
###
###

console = C/opt/GTsonicx/bin/gui-console")
consoleWait -- 5
consoleEnv =

CLD_LIBRARY_PATH=/opt/GTsonicx/lib/RAP:/opt/GTsonicx/lib/R5 :/opt/X 11R5/lib:/net/hm2/p
ackages/X 11R6/lib:/usr/dt/lib")

10.2.5 Implementation Details

The UltraSonix Configuration Utility creates a pair of named pipes: /tmp/from-console and
/tmp/to-console, when it first starts up, These will be opened by UltraSonix if they have been
created when it starts up. Using these named pipes the Configuration utility is able to issue Tcl
commands that UltraSonix already understands directly, as if they were typed in by a user. The
GUI part of the code then simply sets up appropriate callback functions to issue these commands
depending on which buttdn is pushed. To allow the user type in Tcl commands in addition to
selecting buttons from the interface and to print out feedback from UltraSonix, we also added
callback functions to monitor the standard input and the pipe/tmp/to-console and added callbacks
to handle them. (see mconfig.c) When input is detected from stdin, the callback function readInput
simply copies a line to a buffer and then send it to UltraSonix via the/tmp/from-console pipe.
When any activity is detected on the/tmp/to-console pipe, the callback function
printMercatorOutput is called to dump outputs from UltraSonix to standard output.

Another important issue when implementing an GUI console is that the console is usually started
before or at the same time as UltraSonix. This means that UltraSonix will not be able to detect its

existence right away. To solve this problem the GUI console must issue a connect command
explicitly to UltraSonix, with its own window id, so that UltraSonix will also be able to navigate
the console. The connect command is issued to UltraSonix via the/tmp/from-console pipe, as other
console commands, and it should be issued after the pipes have been created and also after the GUI
have been managed or popped up to the desktop in order to get its window id.

11.0 Appendix: TCL Command Reference

(Note that words which are not enclosed in brackets '<' and '>' are keywords. Words enclosed in

brackets are variables. Words which are enclosed by square brackets '[' and ']' are optional.)

11.1 TCL Interfaces to C++ Methods

This section contains built-in TCL commands which are implemented in the files Interp.h and
Interp.cc. These commands generally parse the expected TCL syntax and then call the
corresponding C++ methods.

11.1.1 Diagnostic Output

The Error command can be used to display an error message, get the current error message level
and set the error message level. To display an error message:

11.1.1.1 Displaying Error Messages

Error <error level> <proc name> [<msg 1> <msg 2> <msg 3> ...]

<error level> sets the error level of the error messages in the call. If it is less than or equal to the
current error level, then the messages will be displayed. Possible values for <error level>, in
increasing order, are:

EL_ABORT (abort after displaying the error messages)
EL_FATAL (exit after displaying the error messages)
EL_ERROR (messages are the result of an error condition)
EL_WARNING (warning messages)
EL_STATUS (status messages)
EL_INFORMATIONAL (informational messages)
EL_DEBUG (debugging messages)

<proc name> is the name of the procedure which contains the Error call. <msg n> are the actual
error messages.

t

11.1.1.2 Getting and Setting Error Levels

Error level [<err level>]

UltraSonix maintains a current error level, which determines which error messages are displayed.
All messages with error levels equal to or less than the current error level will be displayed. In
addition to the seven possible values for error level, there are two additional values which can be
set:

EL_NO_MESSAGES

EL_ALLMESSAGES
(do not display any debugging or error messages)
(any messages)

11.1.2OperationsonClients

This sectiondescribesTCL operationsthatcanbeusedto determinthecurrentlyactiveclientand
switchamongclients.

11.1.2.1DeterminingtheCurrentClient

currentClient

ThecurrentClientcommandreturnsauniqueidentifierfor thecurrentclient(whichcanbeusedin
callsto otherTCL commandsthat supportclientoperations),or thestring"NULL" if thereis no
currentclient.

11.1.2.2Moving BetweenClients

advanceClient
backupClient

Thesetwocommandscyclethroughthelist of currentlyactiveclients.Theyhaveno returnvalue.

11.1.2.3Client Names

clientname<client>

Theclientcommandisusedto retrieveinformationaboutspecifiedclients.Currentlyonly the
"name"optionis supported,whichreturnsthenameof theclientasspecifiedby theapplication
writer.

11.1.3OperationsonObjects
11.1.3.1DeterminingtheCurrentObject

currentObject

ThecurrentObjectcommandreturnsthenameof thecurrentobjectif thereisone,or thestring
"NULL" if thereisnocurrentobject.

11.1.3.2ConvertingObjectNames

long2short<obj>
short21ong<obj>

Thesetwo commandsareusedto convertbetweenthe"long" (Xrm-style,dot-notation)and"short"
(uniqueobjectidentifier)namesof XtObjects.Theyeachreturnthecomplementaryname.

11.1.4BindingEventsandActions

11.1.4.1AssociatingTCL Procedures with Events

bindevent [<objlclient>] presslrelease [<shiftlctllmetalalt>] <key> <proc>

The bindevent command is used to associate a named TCL procedure with a particular key event.

The procedure will be executed automatically whenever the event occurs within the scope specified
by the arguments to bindevent.

The first argument to bindevent is optional, and can be an identifier for either an XtObject or a
client. If the argument is present, it indicates that the bind should be established only on the
particular object or client specified. If the argument is not present, the bind will be established
globally (that is, on all objects in all clients).

The next argument indicates whether the TCL procedure will be invoked on a key press or a key
release. The next argument indicates zero or more (optional) modifier keys to detect. Next, the
actual keysym is indicated (see/usr/openwin/include/X 11/keysymdef.h for a list of keysyms).
Finally, the TCL procedure is named. This procedure will be executed whenever the indicated
keysym is either pressed or released, with the optional set of modifiers enabled, within the scope
indicated by the optional first argument.

11.1.4.2 Actions

addaction <proc>

The addaction command makes the named TCL procedure "visible" to the C++ action interface
used internally by UltraSonix. At key points, UltraSonix will "call out" to named actions when the
state of the interface model changes. To enable this callout, the addaction command must be used.

callaction <action> <argO> <arg 1> <...>

The callaction command uses the C++ Action interface to invoke the named action with the

specified arguments. It provides a mechanism for TCL code to invoke the same actions as C++
code.

f

11.1.5 Using the Braille Terminal

11. 1.5.1 Sending Text to the Braille Device

braille display "<row 1>" ["<row 2> <row3>" ...]

Sets the text buffer of the braille loadable object to <row I > <row 2> <row 3>.

braille status <text>

Sets the status cells of the braille device to <text>.

11.1.5.2 Jump Scroll Mode

braille jumpScroll <on/off>

Turns the jump scroll mode on or off.

11.1.5.3SettingBrailleTranslationTable

brailletranslate<table>

Setsthebrailletranslationtableto <table>.

11.1.5.4QueryingBrailleDeviceCapabilities

braillecap<capability>

Thefollowing capabilitiescanbequeriedwith thiscall:

displayCells
statusCells
highlightSupported
hasCursorKeys
hasProgKey
hasHomeKey
otherKeys

(returnsthenumberof displaycells)
(returnsthenumberof statuscells)
(returns1if highlighting issupported,0 otherwise)

(returns1if thedevicehascursorkeys,0 otherwise)
(returns1if thedevicehasprogramkeys,0 otherwise)
(returns1if thedevicehashomekeys,0 otherwise)
(returns1if thedevicehasotherkey,0 otherwise)

11.1.6ConsoleOperations

connectPipe
disconnectPipe

Thesetwocommandsareusedto eitherestablishaconnectionto theconsoleovera namedpipe
(connectPipe),or breakanexistingconnectionto theconsoleoveranamedpipe(disconnectPipe).

WhenissuingtheconnectPipecommand,theconsoleshouldalreadyberunningandblocked,
waitingonUltraSonixto attemptto connectto it.

If UltraSonixdisconnectsfrom its console,it will revertto standardinput/outputfor debugging
messages.

11.1.7Connectingto Clients

connect<winid>

Theconnectcommandisusedto issueanexplicit requestfor UltraSonixto initiatetheconnection
procedureonaspecifiedwindowID.

11.1.8Key andButtonEvents

11.1.8.1UsingKeyboardIdentificationMode

keyannounce[onloff]

Thiscommandenablesordisableskeyboardidentificationmode.Whilein keyboardidentification
mode,all keyboardinput is spokendirectly,andis notprocessedby UltraSonix.

ThekeycombinationShifl-Ctrl-Qwill alsoterminatekeyboardidentificationmode.

11.1.8.2GeneratingKeyboardInput to Applications

key<object><key>[<shiftlcontrollmetalalt>]<presslreleaselboth><stat>

Thiscommandis usedto sendsynthetickeyboardeventsto anapplication.Theeventswill besent
to thewindowassociatedwith theobjectspecifiedby the<object>parameter.The<key>
parameterindicatesthebasickeyto send;it is espressedasanX keysym(thestring"Right" isused
to indicatetheRightarrow,for example.See/usr/openwin/include/Xl1/keysymdef.hfor a list of
keysyms.)Next,anoptionalmodifierparameterallowsthecallerto specifyamodifierkey,such
asshift, control, andsoon.

Thekeycommandallowscallersto generatepressesandreleasesindividuallyor,morecommonly,
bothsequentially.Thenextparameterspecifieswhetherto sendapress,arelease,or both.

Thefinal parameter,<stat>,indicatesthecurrentgrabstatusof thekeyon thecurrentobject.
UltraSonix"grabs"thekeysit needsfor navigationawayfrom applications.Thekeysthatare
grabbedaredeterminedby the"bindevent"commandspresentin thestartupTCL files. UltraSonix
doesnot"remember"whatkeysarealreadygrabbed;this is left up to thewriter of TCL code.
Youmustpasseither"1" or "0" asthe<stat>parameterto indicatewhetherthekeyyouare
generatingis onethathasalreadybeengrabbedornot.

If youaresendinga keythatis grabbedby UltraSonix,thekeycommandwill ungrabit, sendthe
requiredevents,andthengrabit again. If yousendakey thathasbeengrabbedwithoutsettingthe
<stat>argumentto "1" thenUltraSonixmayloopindefinately(thekeywill besentto the
application,but thegrabisstill activesoit is returnedto UltraSonix,which isagainpassedto the
application....).

11.1.8.3GeneratingMouseInput to Applications

11.1.8.3.1Button Events
t

button <object> [presslrelease] [11213]

The button command generates button presses and releases to applications. The command allows
callers to specify whether a press or release is generated, and which button to generate (1, 2, or 3).

The optional "object" parameter indicates an explicit object to send the input to. If present, the
mouse will be warped to the indicated object and input will be sent there. If not present, the event
will be sent to the object currently under the pointer.

1 1.1.8.3.2 Moving the Cursor

relativemotion <x> <y>

The relativemotion command is used to move the on-screen cursor to a new location. The x and y

arguments indicate the offset to the new position, relative to the current position. Also note the

"xwin warp" command.

11.1.9RetrievingPropertiesof theModel

The"modelManager"commandisusedto retrieveinformationfrom theoff-screenmodel. There
areseveraloptionsavailableto thiscommand.

11.1.9.1 Parent/Child Relationships

modelManager parent <object>

The parent option returns the identifier for the parent of the specified object, or the string "NULL"
if the object has no parent.

modelManager children <object>

The children option returns a TCL list of all of the children of the current object, or an empty list if

the object has no children.

11.1.9.2 Object Location and Geometry

modelManager window <object>

The window option retums the actual X Window System window identifier for the window
associated with the specified object. Two special values may be returned: 0 indicates that the
object is not realized (that is, it has no window associated with it), and 2 indicates that the object is

a gadget (that is, it is a windowless widget).

modelManager x <object>
modelManager y <object>
modelManager width <object>
modelManager height <object>
modelManager borderWidth <object>

These options are used to return the X and Y location, width and height, and border width of the
specified object. The return values are in terms of pixels. X and Y are relative to the object's

parent.

modelManager location <object>

The location object issues an explicit RAP request to retrieve the specified object's location. In
general this option should never be used, as it incurs a significant performance penalty. It may be
useful in some situations where the off-screen model is out-of-date with respect to the on-screen

display, however.

11.1.9.3 Names and Other Object Attributes

modelManager name <object>

The name option returns the name of the specified object, as given by the application writer.

modelManager class <object>

The class option returns the widget class of the specified object.

modelManager longname <object>

The longname option returns an "Xrm-style" dot-notation name for the specified object. The value

returned from this command may be used in a .Xdefaults file, or as an identifier in an object
template to refer to a specific widget.

modelManager mapped <object>
modelManager managed <object>

These options return the string "TRUE" or "FALSE" depending on whether the specified object is
mapped or managed, respectively.

11.1.10 Generating Non-speech Audio Output

playsound <sound file> [<rate> <volume> <muffle> <looped> <delay>]

Plays <sound file>. If more than two arguments are supplied, it also sets the playing rate (0 to
1.0), volume (0 to 100), muffle (0 to 100?), looped (0 or 1) and delay (in milliseconds).

stopAllSounds

The stopAllSounds command stops all sounds currently playing on the audio device.

audio name

The audio command returns the name of the current audio device (for example, "netaudio").

11.1.11 Shutting Down UltraSonix

quit

The quit command is used,to terminate UltraSonix gracefully.

I I. 1.12 Accessing Resources

resource <obj> get <name>

The get option to the resource command retrieves the value of the named resource, in the named
object, from the off-screen model. It is presented as a string.

resource <obi> set <name> <value>

The set option to the resource command changes the value of the resource WITHIN THE
APPLICATION. This option should be used with extreme caution, as it is possible to break
applications with this command. It is also very expensive.

To work, a converter from string type to the native type of the resource must exist within the
application.

resource<obj>request<name>

Therequestoption to the resource command issues an explicit RAP request to retrieve the value of
the specified resource. This option should almost never be used, as it is very expensive. It may be
useful in situations where application- or widget-writers update the value of resources in a way that
bypasses the RAP hooks in X.

resource <obj> list

The list option lists all of the resources, their types, and their values on the specified object.

11. I. 13 Speech Output

11.1.13.1 Producing Speech

speak <text> [nointerupt]

This command sends <text> to the speech device. If the nointerupt keyword is not given, any
current speech will be stopped before <text> is spoken. If the keyword 'nointerupt' is given, then
<text> will be appended after any current speech.

11.1.13.1 Querying Speech Device Capabilities

speak cap <capability>

This command queries UltraSonix for specific capabilities of the speech device. Valid values for
<capability> are:

voices (returns a list of voices supported)
languages (returns a list of languages supported)
minRate (returns the minimum speech rate)
maxRate (retums the maximum speech rate)
gainSupported (returns 1 ,if gain control is supported by the device,

0 otherwise)

11.1.14 Low-Level X Window Operations

This section describes the usage of the "xwin" command, and its associated options, to operate on
low-level X windows.

11.1.14.1 Using Properties

xwin property set <winid> <property> <value>
xwin property get <winid> <property>

The property option of the xwin command allows the user to set and get the values of window
properties. THIS OPTION IS NOT FULLY IMPLEMENTED.

11.1.14.2Using Selections

xwin selectionset<selection><value>
xwin selectionget<selection>

Theselectionoptionof thexwin commandallowstheuserto setandgetnamedX selections(for
cutandpaste).THIS OPTIONISNOT FULLY IMPLEMENTED.

11.1.14.3AccessingWindowAttributes

xwin window set<winid><attribute><value>
xwin window get<winid> <attribute>

Thewindowcommandallowsthecallerto retrievenamedwindowattributesfrom specified
windows,andto setthoseattributes.THIS OPTIONIS NOTFULLY IMPLEMENTED.

11.1.14.4WindowandPointerManagement

xwin warp<x> <y>
xwin warp<obj>

Thewarpoptiontothexwin commandallowsthecallerto "warp"themousepointerto aspecified
locationon thescreen.Therearetwo formsof thiscommand.Thefirst specifiesanabsoluteX,Y
coordinatepair(relativeto theroot,orbackground,window). Thesecondspecifiesaspecific
objectto warpto. Thecursorwill beplacedatcoordinates(1,1)relativeto thenewobject.

xwin raise<obj>
xwin lower<obj>

Theraiseandloweroptionsareusedto raiseor lowerthewindowhierarchycontainingthe
specifiedobject.

setFocus<obj>
/

The setFocus command sets the current location and window focus to the specified object, and sets

the current client to the client that contains this object.

NOTE that setFocus should be a suboption of the xwin command for orthogonality.

11.1.15 Using the ScreenReader

ScreenReader functionality is accessed via the "sreader" command. There are a number of options
to this command that can be used to change ScreenReader parameters, rr.tfieve text from the model,

and query and update cursor positions.

11.1.15.1 Changing ScreenReader Parameters

sreader speed <speed>
sreader voice <voice>

Thespeedandvoiceoptionsgloballychangethecurrentspeechrateandvoice. Notethatthese
optionsaffectthewayUltraSonixspeaksin everytext area.

11.1.15.2Using Cursors

sreader<obj> togglecursor

Thetogglecursoroptiontogglesbetweeneditandreviewmodein thespecifiedobject.

sreader<obj>togglefollow

Thetogglefollowoptiontoggleswhetherthereviewcursorwill follow theedit cursorasit moves
in thespecifiedobject.

sreader<obj>cursor

Thecursoroptionreturnsthecurrentcursormode(eithereditor review),thecurrentfollow mode
(eitherreview-follows-edit,or not),andthecurrentX, Y cursorpositionfor thespecifiedobject.

sreader<obj> cursormode

Thecursormodeoptionreturnsthecursormode(eitherreviewor edit) for thespecifiedobject.

sreader<obj> cursorcoords

Thecursorcoordsoptionreturnsthecurrentcursorlocation.

sreader<obj> cursor<x> <y>

Thecursoroption,with X andY arguments,setsthepositionof thecurrentcursorin thespecified
objectto theprovidedlocation.

11.1.15.3UsingFilters

sreader<obj>filter

Thefilter option,with noarguments,returnsthenumberof installedfilters in thespecifiedobject.

sreader<obj>filter <filter>

Thefilter optionprovidedwith thenumberof afilter returnsthestatusof thefilter in thespecified
object(eitherON or OFF).

sreader<obj> filter <filter> <status>

Thefilter optionusedwith thenumberof afilter andastatus(either1or 0) setsthefilter eitheron
or off, for thespecifiedobject.

sreader<obj>filter <filter>name

Thefilter nameoptionreturnstheASCIInameof thefilter whoseID isprovidedby the<filter>
argument.

11.1.15.4ReadingandMovingThroughText

sreader<obj>read<thislnextlprev><charlwordllinelsentencelparagraphlscreen>[raw]

Thereadoptionreturnsthespecifiedunit of textto theTCL interpreter.It doesnotadvancethe
cursorposition. Thetext is returnedfrom whichevercursoris currentlyactive(eitherreviewor
edit).

Thefirst argumentspecifiestheobjectfrom whichtext shouldbereturned.Theargumentafter
"read"indicateswhetherthetextchunkthatis returnedshouldbeatthecurrentcursor("this"),
beforethecurrentcursor("prev"),or afterthecurrentcursor("next").

Thenextargumentspecifiesthesizeof thetextchunkto beretrieved.Textmayberetrievedby
character,by word (wordsareseparatedby oneof asetof delimitercharacters),by sentence
(sentencesareseparatedbyoneof asetof terminatingcharacters),paragraphs(separatedby blank
lines),lines,or screens(all currentlyvisibletext). Theoptional"raw"parameterindicatesthatthe
text shouldbereturnedwithoutfilteringbeingappliedto it. Thisoptionis usefulfor retrievingtext
thatwill besentto abrailledevice.

(Notethatterminalanddelimitercharactersmaybesetvia theC++API to theScreenReaderclass.
Thereis currentlynoTCL API for settingthesecharacters.)

sreader<obj> move<thislnextlprev><charlwordllinelsentencelparagraphlscreen>

Themoveoptionworksthesameasthereadoption,with theexceptionthatit updatestheposition
of thecurrentlyactivecursor.Movereturnsthetext ishasmovedover. (Notethatthemove
optiondoesnotcurrentlysupportthe"raw" option.)

11.1.15.5MiscellaneousScreenReaderFunctions

sreader<obj> incoming ,

The incoming option cycles through the "incoming text" modes (also known as echo modes).

Supported echo modes are:

character Speak incoming text as each character is typed.
word Speak incoming text as each word is completed.

line Speak incoming text as each line is completed.
sentence Speak incoming text as each sentence is completed.

(Not currently supported.)
click Click as each character is typed. (Not currently

supported.)

sreader <obj> dumptext

Primarily useful for debugging, the dumptext option displays all text currently in the
ScreenReader's text model for the specified object.

I1_1

11.1.16MiscellaneousText-RelatedFunctions

11.1.16.2DeterminingtheLocationof Text

getTextVertCoord<obj>
getTextHorizCoord<obj>

Thesetwo commandsreturnthepixel locationof thecurrentcursorin thetextareaspecifiedbythe
objectparameter.Thelocationis expressedasarelativeoffsetwithin thetextarea.

11.1.16.1DebuggingtheTextModel

textrepdebug<obj> [onloff]

Thetextrepdebugcommandprovidesavisualdebuggingtool for thetextmodel. To enablethe
TextRepdebuggingwindowfor aparticularobject,passthenameof theobjectandthe"on"
parameterto textrepdebug.If theobjectsupportstextmode,a newwindow will becreatedwhich
providesarepresentationof whatUltraSonix"thinks"is in thetextarea.Issuethe"off" parameter
to disabletextrepdebugging.

11.1.17LoggingUserActivities

UltraSonixprovidesanumberof commandsto supportloggingandtracingof interactivesessions.
Thesecommandscanbeusedto evaluateuserperformancewhenusingthesystem.

StartTimer<file>

The StartTimer command opens the specified file and writes the current time of day information
into it. It is assumed that this file will later be used to collect timed performance data via the
logtoFile command.

logtoFile <file> <argO> <argl > <...>

The logtoFile command writes the current time and all of its command line arguments to the file
named by the first argument.

11.1.18 Template and Configuration Management

This section describes the commands used to interact with the template and configuration
subsystems in UltraSonix.

11.1.18.1 Using Template Values From TCL

wtemplate <obj> <attribute>

The wtemplate command retrieves template attributes from the "widget" templates (class and object
templates, as opposed to application templates). The user supplies the name of an object, and an
attribute to retrieve. The command will return the value of the attribute, searching in both object
and class template lists, and running any TCL procedures necessary.

NOTEthatthereisnocorrespondingatemplate(for apptemplate)command(althoughthereshould
be).

11.1.18.2Writing New TemplateFiles

writeout <templatename> <filename> [<AICIO>]

The writeout command is used to store the internal (C++ object) representation of a template to
long-term storage. The result is a new template file, which is parsable and loadable by UltraSonix.

The first argument is the name of the template. This name should be appropriate for the type of
template file you are writing (dot-notation for object templates, class name for class templates,
application name for app templates). The next argument is the filename to write the template to.

The final (optional) argument is a specifier indicating whether the template is an application, class,
or object template. If omitted, the writeout command will search for an existing template with the
specified name, determine its type, and use that type when writing the template. We recommend
always specifying the template type explicitly.

11.1.18.3 Retrieving Configuration Attributes

configVal <attr>

The configVal command retrieves attributes from the configuration file. This command is currently
quite broken, and will only return the errorLevel attribute.

11.1.18.4 Loading Files

loadattrib

loadconfig
loadtemplates
loadall

The loadattrib, loadconfig; and loadtemplates commands cause UltraSonix to reload its attribute,
configuration, and template information from the locations it was loaded from previously.

The loadall command forces a reload of all startup files.

J

i

11.2 "Pure" TCL Commands

These are procedures which are implemented in TCL and are thus interpreted at run time. Only the
most important of these are described here; see the TCL files for more details.

11.2.1 Audio

Audio <node> <delay>

The Audio procedure (defined in audio.tcl) is responsible for playing the audio clip associated with
a given object (specified by node), at a given delay. This procedure will retrieve any necessary
widget-specific information to generate the correct sound.

AudioOn
AudioOff

Theseprocedureswill muteor unmutethenon-speechaudiofrom UltraSonix(mutestateis
controlledby aTCL globalvariable).

11.2.2InterfaceHelpers

Select<node>

TheSelectproceduregeneratesamousepress-releasepair ontheobjectspecifiedbythenode
argument.

Novice
Intermediate
Expert

These procedures set the user level to either novice, intermediate, or expert. The notion of "user
levels" is only maintained by the TCL code as a global variable that is checked by the various other
TCL procedures. The C++ side of UltraSonix knows nothing about user levels.

Preview

Produce an audio preview of the current object, if it is a container.

Info

Produce the informational non-speech and speech output for the current object.

HearPath

Produce a non-speech audio cue of the path from the top of the widget tree to the current location.

JumpBack
JumpForward

These procedures jump to the first or last object in a container.

11.2.3 Navigation

GoTo <node>

Move immediately to the specified node.

NavUp
NavDown
NavLeft

NavRight

These procedures are responsible for the basic inter-object navigation used by UltraSonix. They
make an attempt to discard extraneous levels in the hierarchy.

B

NavAppRight
NavAppLefl

Move between applications.

11.2.4 Text Mode

ToggleCursorMode
ToggleFollowMode
ToggleFilterMode
FilterModeOn
FilterModeOff
AnnounceFilterMode

ChangeTextMode

These procedures are responsible for calling into the C++ layer to implement various cursor and
filtering functions.

11.2.5 Miscellaneous

widgetTree <outfile>

The widgeTree procedure dumps the entire widget hierarchy containing the current object to the
specified file.

12.0 Appendix: RAP Protocol Specification

See the following World Wide Web page for the RAP specification:
http://www.cc.gatech.edu/gvu/multimedia/x-agent/RAPBack.html

t

13.0 Appendix: Known Bugs

• There is sometimes a delay (buffering problem?) when popups are created. The user must
navigate into the object before sounds are flushed.

• UltraSonix does not rendezvous with clients created with UIM/X. Problem is with how

UIM/X creates its toplevel shells.

• Scrollbars are not used.

• When UltraSonix detects a new window being mapped on the root window, it should raise the
current client to ensure that focus is not lost.

• Use of OpenWindows in left-handed mode breaks synthetic mouse input. UltraSonix should
detect left-handed mode and generate events accordingly.

I •

Ii

• If the last object in a client is unmapped or destroyed (but the client remains running)
UltraSonix should select a new client to move to. It currently does not. (But we've never
actually seen any applications that destroy all their widgets but remain active.)

• ProtoTextRep cannot support empty text areas well, because of it's dependence on detection of
interline spacing.

• The client-side converter CvtXmStringTableToString0 doesn't work. Hence we cannot
download XmStringTable resources into UltraSonix.

• There is inconsistent usage of ChecklsShell and IsTopLevel in RAP.cc.

• NumChildrenMuffle in templateprocs.tcl does not check for divide by zero (breaks on
containers with no children).

• UltraSonix has no way to block waiting on a RAP request to return. Hence, things like
"conservative" retrievals of resource values that may be out-of-sync are impossible.

• We're still just sending button presses for selection. We need to get the translation table out of
the widgets and send the *appropriate* events for selection instead.

• Right now we can only have one action bound to a particular name. It may be useful to
support multiple actions, possibly trom different Action subclasses, associated with a name.

• The bindevent command only understands X protocol events, not events from other input
sources (such as a braille keyboard, external keypad, or speech recognizer). This causes some
hackery in the loadable modules that support input.

• UltraSonix should support a "collaborative" mode where a sighted user can use the mouse to
change UltraSonix' idea of where the current context is.

• The console should include a command line that accepts regular Unix commands, and executes
them with an LD LIBRARY_PATH appropriate for starting under UltraSonix.

• Iconified applications are not handled well.

• Copy/paste, and drag/drop are not supported.

• Resource converters (for the ResourceTypeManager) should by dynamically loadable so that
they can be created without needing to recompile UltraSonix.

• An interactive customization/keybinding/template-editing facility would be nice.

• Text areas modeled via ProtoTextRep may not be cleared appropriately.

• If UltraSonix generates a very large amount of debugging output to the console, the console
may die unexpectedly.

• Repeatedly hitting the buttons on the console very quickly may hang the console.

• Blanks added as "padding" to the text model (spaces at the ends of lines and blank lines not
explicitly drawn by the application) may have different graphics context information than
surrounding text.

Detectionof highlightchangesacrossline boundariesdoesnotwork.

Detectionof highlightingimplementedvia rectangledrawing(X_PolyFillRectangle)isnot
supported.

16-bittext is notsupported.

Menusareonly supportedvia tear-offs.

ProtoTextRepdoesnotsupportmultiplefontswithdifferentmetricsin thesametext area

(multiple fonts with the *same* metrics are supported however).

UltraSonix does not currently take advantage of information about spatial geometry of
interfaces. Hence, it does not understand overlapped widgets (as in dtcm) or widgets that are

invisible because they are clipped by their parents (as in dtfile).

Horizontal scrolling in text areas is not handled well by ProtoTextRep.

On keyboards with multiple sets of cursor keys (such as the Sun Type 5) navigation in edit
mode on applications without block cursor support may be off by one.

There are still occasional menu-related problems: sometimes UltraSonix will attempt to warp to

an unposted menu (the symptom is that the pointer goes to location (0,0) on the screen).

